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Understanding various micro-decisions of travelers (e.g., choice of vehicles, travel

modes, or destinations) is of utmost importance in travel demand modeling. Af-

ter the first application of the multinomial logit model in the early 1970s, micro-

econometric models to elicit these type of choices have evolved in mainly two

ways: a) computationally efficient estimation (e.g., fast integral approximations);

and b) behaviorally defensible models (e.g., modeling preference heterogeneity).

This dissertation contributes to both lines of behavior modeling research —

whereas chapters one to three analyze and improve the computational efficiency

of flexible logit models and the required approximation of high-dimensional

integrals, chapter four derives the first multinomial response model with a t-

distributed error kernel that accounts for decision uncertainty behavior of travelers.

A summary of each chapter is provided below.

In Chapter 1, we extend the logit-mixed logit (LML) model, an advanced semi-

parametric specification of preference heterogeneity, to a combination of fixed and

random parameters. We show that the likelihood of the LML specification loses

its special properties due to the inclusion of fixed parameters, leading to a much

higher estimation time. In an empirical application about preferences for alterna-

tive fuel vehicles in China, estimation time increased by a factor of 20-40 when
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introducing fixed parameters. Despite losses in computation efficiency, we show

that the flexible LML could retrieve multimodal mixing distributions.

In Chapter 2, we derive, implement, and test minorization-maximization (MM)

algorithms to estimate the semiparametric LML and mixture-of-normals multino-

mial logit (MON-MNL) models. In a Monte Carlo study and empirical application

to estimate consumer’s willingness to adopt electric motorcycles in Indonesia, we

compare the maximum simulated likelihood estimator (MSLE) with the derived

MM algorithms. Whereas in LML estimation MM is computationally noncom-

petitive with MSLE, it is a competitive replacement to MSLE for MON-MNL that

obviates computation of complex analytical gradients.

In Chapter 3, we propose the application of a moment-based designed quadra-

ture (DQ) method to approximate multi-dimensional integrals in MSLE of discrete

choice models. The results of simulation study indicate that DQ is a potentially

attractive alternative to quasi-Monte Carlo (QMC) because it requires fewer eval-

uations of the conditional likelihood (i.e., lower computation time) as compared to

QMC methods, is as easy to implement, ensures positivity of weights, and can be

created on any general polynomial spaces. Finally, we validate the performance

of DQ on a case study to understand preferences for mobility-on-demand services

in New York City.

In Chapter 4, we demonstrate that using a t-distributed error kernel in multino-

mial choice models helps in better predicting the preferences in class-imbalance

datasets. This specification also implicitly accounts for the consumers’ decision un-

certainty behavior. Because of these statistical and behavioral advantages, we de-
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rive the first multinomial response model with a t-distributed error kernel and ex-

tend this to a generalized continuous-multinomial (GCM) model. In the empirical

study related to the adoption of electric vehicles (EVs), we observe that accounting

for decision uncertainty behavior in the GCM model with t-distributed error kernel

results into a higher willingness to pay for improving the EV attributes than those

of a GCM model with a normally-distributed error kernel. These differences are

relevant in making policies to expedite the market penetration of EVs.
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CHAPTER 1

EXTENDING THE LOGIT-MIXED LOGIT MODEL FOR A COMBINATION

OF RANDOM AND FIXED PARAMETERS

1.1 Introduction: flexible mixing distributions

Analysts who model decision-making processes using random utility maximiza-

tion theory cannot possibly include all relevant factors that affect choices. In fact,

the decision-making process is generally heterogeneous. Heterogeneity may oc-

cur due to taste variations in how decision makers weigh different attributes.

Taste variations can be decomposed into observed and unobserved preference het-

erogeneity. Whereas the standard conditional or multinomial logit (MNL) model

(McFadden, 1973) can model observed preference heteorgeneity typically by in-

teracting attributes with characteristics of the individual, unobserved preference

heterogeneity requires further assumptions and a different model. To take into

account unobserved preference heterogeneity, Boyd and Mellman (1980) intro-

duced the mixed multinomial logit (MMNL) model by adding to MNL random

parameters that follow a prespecified parametric, continuous mixing distribution.

MMNL rapidly became standard practice in choice modeling research after the

seminal paper by McFadden and Train (2000), where the authors showed that any

random utility maximization model can be approximated by MMNL, if mixing

distributions of the random parameters are specified correctly.

1
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In the MMNL literature, most studies have used normal or lognormal hetero-

geneity distributions and a few have used gamma or triangular mixing. However,

Louviere and Eagle (2006), Fosgerau and Hess (2007), and Louviere and Meyer

(2008) have argued that the normal (and other parametric) mixing distributions

may introduce problems of misspecification if the assumed distribution is not ap-

propriate for the data; for example, researchers may obtain a negative marginal

utility of income if a normal distribution is assumed (or any parametric distribu-

tion with a possibly negative support). Bajari et al. (2007), Fosgerau and Bierlaire

(2007), Train (2008), Bastin et al. (2010), Fox et al. (2011), and Fosgerau and Mabit

(2013) have specified non-parametric mixing distributions that are flexible and yet

results into computationally less expensive estimation breaking down the tradi-

tional flexibility versus ease of estimation tradeoff.

MMNL estimation is a nonlinear optimization problem, but Bajari et al. (2007)

proposed a method that is fast and easy to code that takes advantage of a linear-

regression-type specification. The authors assume that the population can be

sorted into finite classes or clusters (i.e. the number of preference parameters

is discrete, c.f. the latent class logit specification: Kamakura and Russell, 1989;

DeSarbo et al., 1995; Bhat, 1997) and assert that their estimator is non-parametric

because any mixing distribution can be approximated by making the number of

classes large enough. However, this linear regression method may violate some

necessary constraints on the model parameters. To handle this issue, Fox et al.

(2011) raparameterized MMNL and derived a specification very similar to that

of Bajari et al. (2007), but used inequality constrained linear least squares. Fos-
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gerau and Bierlaire (2007) further proposed a method to approximate any contin-

uous distribution using Legendre polynomials. The use of polynomials is a very

flexible simply because different distributions can be recovered by adding more

terms to the series expansion. In addition, Train (2008) used computation-efficient

expectation-maximization (EM) algorithms for non-parametric estimation of ran-

dom parameter logit-type models (cf. Bhat, 1997).

Train (2016) has very recently proposed the logit-mixed logit (LML) model,

which is a generalized specification for all above four methods to generate mix-

ing distributions.1 The logarithm of the mixing distribution can be easily spec-

ified in LML, using splines, polynomials, step functions, and many other func-

tional forms. Additionally, a computationally-convenient likelihood equation –

that does not require computation of conditional choice probabilities in iterative

optimization – significantly reduces estimation time of LML (see Section 1.2.3 for

details). However, in its original formulation, LML assumes all utility parame-

ters to be random. Note, however, that fixed parameters are usually needed in

practice: a few of such instances are discussed below and illustrated in the em-

pirical study. First, fixed alternative-specific constants (ASCs) should be included

in the utility to account for alternative-specific fixed effects. Second, preferences

1However, note that Train (2016) does not generalize Bastin et al. (2010) and Fosgerau and
Mabit (2013). Fosgerau and Mabit (2013) suggests to draw random numbers from some initial
distribution (e.g., uniform) and transform these draws using a polynomial or other function to
recover the mixing distribution. Similarly, Bastin et al. (2010) proposed a non-parametric method
to approximate the inverse cumulative distribution function of the mixing distribution. They use a
polynomial approximation (B-spline parameterization) of an initially chosen uniform distribution.
A major limitation of these procedures is understanding the relationship between the shape of the
mixing distribution and that of the initial distributions.
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for a specific covariate may not vary across individuals and thus the estimated

parameter may be just non-random. Third, a parsimonious specification of het-

erogeneity combines different means (deterministic taste variation) with the same

variance of the unobserved part, by allowing the mean of a random parameter

(e.g., marginal utility of price) to differ by socio-demographics (e.g., gender). This

taste variation specification requires the inclusion of a fixed parameter on the in-

teraction of the covariate with the demographic dummy (e.g., price × gender).

This chapter asserts that under a more general utility specification, i.e. utility with

a combination of random and fixed parameters, the likelihood equation loses its

computationally-convenient form, and thus LML exhibits major losses in compu-

tational efficiency. In fact, the computation time of a model with a fixed parameter

may be even 40 times higher than that of the case where all parameters are ran-

dom (see Section 1.3.2 for an example of this situation). This result is somewhat

counter-intuitive because in parametric MMNL models assuming fixed parame-

ters actually reduces computation time.

In sum, this chapter aims at: 1. Extending the LML model for a combination of

random and fixed parameters (Section 1.2); and 2. Providing an empirical applica-

tion of our LML extension (Section 1.3) – as case study we use stated preferences

for alternative fuel vehicles in China. The original LML and our LML extension

are used to fit models, and we compare the results with MNL and MMNL with

normal heterogeneity (MMNL-N) models.
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1.2 Incorporating a subset of fixed parameters in logit-mixed

logit models

1.2.1 Model Specification

Consider a standard discrete choice setting where individual n ∈ {1, . . . ,N} chooses

one alternative from the mutually exclusive choice set {1, . . . , J} (indexed by j)

over the set of discrete time periods {1, . . . ,T } or choice situations (indexed by t).

The random utility maximization model is specified as

Un jt = xn jt′βn + εn jt =
[
xF

n jt′ xR
n jt′

]  βF

βR
n

 + εn jt (1.1)

where Un jt is the random indirect utility associated with individual n choosing

alternative j during choice situation t, and εn jt is an iid extreme value type I pref-

erence shock. Moreover, both the alternative attributes and preference parame-

ters are sorted in two groups. On the one hand, βF is a vector of fixed preference

parameters and xF
n jt is the attribute/covariate vector associated with these fixed

parameters. On the other hand, βR
n is a vector of random parameters and xR

n jt is

the attribute vector for which the researcher expects the presence of unobserved

preference heterogeneity. The consideration of a combination of fixed and ran-

dom parameters is a generalization of the LML model as derived by Train (2016),

where all parameters are assumed random. The mixing distribution of the set of

random parameters βR
n is modeled semi-parametrically below.
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If int denotes the alternative observed to be chosen by individual n at time

t, consider now the sequence of chosen alternatives for the decision maker

{in1, . . . , inT }. The probability that individual n made this sequence of choices, con-

ditional on βn, is:

Ln(βn) =

T∏
t=1

Qintt(βn) (1.2)

where Qnintt(βn) is the probability of individual n choosing alternative int in choice

situation t. The conditional choice probability Qnintt(βn) is given by the following

conditional logit expression:

Qnintt(βn) =
eUnint t∑J
j=1 eUn jt

. (1.3)

Variations in the set of random parameters βR
n are represented semi-

parametrically with a discrete mixing distribution over a finite support set S . Con-

sider the following logit-type expression for the probability that βR
n = βR

r :

wn(βR
r |α) = Pr(βR

n = βR
r ) =

ez(βR
r )′α∑

s∈S ez(βR
s )′α

(1.4)

where α is a vector of parameters and z(βR
r ) is a vector-valued function that cap-

tures the shape of the mixing distribution. z can be specified as a sieve function,

such as polynomial or other functional forms, including step functions and splines

(see details in Train, 2016).

The unconditional probability of the sequence of choices of individual n (Pn) is

simply:

Pn(βF ,α) =
∑
r∈S

Ln(βF ,βR
r )wn(βR

r |α), (1.5)
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where the parameters of interest are βF and α.2 It is important to note that in the

LML model as derived by Train (2016), i.e. with all parameters random, α is the

only parameter of interest. In our extension that incorporates fixed parameters,

both βF and α need to be estimated. In what follows, we will label our exten-

sion to the model LML-FR, to make evident the combination of fixed and random

parameters.

1.2.2 Maximum Likelihood Estimator

Adopting a frequentist approach to the estimation of the parameters of interest,

the maximum likelihood estimator is implemented. The loglikelihood of the LML-

FR model is shown in equation 1.6:

L(βF ,α) =

N∑
n=1

ln
(∑

r∈S

Ln(βF ,βR
r )wn(βR

r |α)
)
. (1.6)

As pointed out by Train (2016), the discrete support set S of the mixing dis-

tribution may be too large for practical evaluation of the loglikelihood. Using

simulation-based econometrics, the loglikelihood can be simulated by the stan-

dard procedure of sampling the random parameters. In the LML model, the log-

likelihood is simulated by considering an individual-specific, randomly generated

subset S n of the original support S . The simulated loglikelihood can be then writ-

2The random parameters βR
n are fully represented by the exogenous choice of z and the esti-

mates of α.
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ten as:

L̃(βF ,α) =

N∑
n=1

ln
(∑

r∈S n

Ln(βF ,βR
r )wn(βR

r |α)
)
. (1.7)

The partial derivative of L̃with respect to α is:

∂L̃

∂α
=

N∑
n=1

∑
r∈S n

(
hn(βF ,βR

r |α) − wn(βR
r |α)

)
z(βR

r ) (1.8)

where

hn(βF ,βR
r |α) =

Ln(βF ,βR
r )wn(βR

r |α)∑
s∈S n

Ln(βF ,βR
s )wn(βR

s |α)
; (1.9)

and the partial derivative of L̃with respect to βF is:

∂L̃

∂βF =

N∑
n=1

∑
r∈S n

(
hn(βF ,βR

r |α)
T∑

t=1

(
xF

nintt −

J∑
j=1

xF
n jtQn jt

))
. (1.10)

Finally, the simulated score (gradient of L̃) is:

∇(L̃) =

[
∂L̃

∂α

∂L̃

∂βF

]
. (1.11)

The willingness-to-pay space specification is presented in Appendix A.1.

1.2.3 Computational Efficiency of LML with all random and

some fixed parameters

If all parameters are random, i.e. βn = βR
n , the score of the model is simply ∂L̃/∂α

(equation 1.8). In addition, Ln(βR
n ) (equation 1.2, conditional on βn) is independent
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of α and therefore, does not change in the optimization process. In the original

LML model with all random parameters (Train, 2016), Ln(βR
n ) is only computed

once –before starting the optimization process– considerably reducing estimation

time. However, if both random and fixed parameters are considered (LML-FR),

the individual probability of the sequence of choices Ln(βF ,βR
n ) changes at each it-

eration of the maximum simulated likelihood estimator, due to iterative changes

in βF . These iterative changes cause considerable losses in computational effi-

ciency of LML-FR.

The covariance matrix of the parameters α and βF can be estimated using a

sandwich estimator based on score functions (equations 1.8 and 1.10). However,

the mean and standard deviation (and other statistics) of βR
n are of actual interest to

researchers (rather than α itself). The delta method can be used to compute stan-

dard error of these statistics from the covariance matrix of α, but this calculation

requires deriving and coding complex derivatives for different functional forms

of z(βR
r ). Thus, standard errors of statistics associated with βR

n and βF are calcu-

lated through bootstrapping (Train, 2016). The loss of computational efficiency in

LML-FR also affects the speed of calculating standard errors.

1.3 Empirical Application

To illustrate the use of the LML model and its LML-FR extension derived in this

chapter (with a combination of fixed and random parameters), we use choice mi-
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crodata about preferences for alternative fuel vehicles in China. Note that we only

consider z to be a polynomial and spline to retrieve the mixing distribution of βR
n

(for further details about implementation of these functions in the estimator, see

Train, 2016).

1.3.1 Data Description

The data comes from a discrete choice experiment (DCE) on alternative-fuel ve-

hicles that was part of a larger survey of Chinese urban households. The survey

was administered between December 2012 and January 2013 by Horizon Research

Consultancy Group, a well-established market research company from China, us-

ing computer-assisted in-person interviews. Respondents aged 18 to 60 years

were randomly intercepted and interviewed at malls or other public places of

Bejing and Guangzhou. The final sample comprises 578 individuals.

In the DCE, respondents had the choice of four vehicles with different fuel

types: gasoline, natural gas, hybrid, and all-electric. In addition to fuel type, the

vehicles were described by five four-level attributes, as shown in Table 1.1. The

levels of purchase price and engine power were customized based on lower and

upper bounds that respondents indicated for the two attributes when questioned

about their expected next vehicle purchase. The midpoint of the range spanned

by the bound values served as individual reference, with the help of which the at-

tribute levels of the underlying experimental design, expressed in relative terms,

10



www.manaraa.com

were re-expressed in absolute terms. Fuel availability was represented by the

share of existing filling stations that have the fuel, just as in previous studies in

Europe (e.g., Achtnicht et al., 2012) and the U.S. (e.g., Bunch et al., 1993). The two

lowest fuel availability levels were excluded for gasoline and hybrid cars in order

to avoid unrealistic attribute-level combinations. Likewise, the lowest emission

level was only applied to electric vehicles.

Table 1.1: Attributes and Levels for the Discrete Choice Experiment

Attribute Levels
Fuel type Gasoline, hybrid, natural gas, electric
Purchase price 70%, 90%, 110%, 130% of reference (in CNU)a

Engine power 70%, 90%, 110%, 130% of reference (in kw)a

Fuel costs per 100 km CNU 20, CNU 60, CNU 100, CNU 140
Emission level 10%b, 50%, 100%, 150% of a present-day average vehicle
Fuel availability 10%c, 40%c, 70%, 100% of existing filling stations

a Midpoint of the range indicated by the respondent for the next purchase.
b Only applied to hybrid and electric vehicles.
c Only applied to natural gas and electric vehicles.

The final experimental design was generated with the help of Ngene soft-

ware, using a D-efficient design that decreases the variance of parameter estimates

(Kuhfeld et al., 1994). The thus generated 24 choice sets were divided into four

blocks of six choice sets. Each respondent faced one of these choice set blocks,

resulting in six observations per subject. In every choice set each fuel type ap-

peared exactly once, where the order of the fuel types was randomized between

choice sets. Respondents were asked to select the vehicle they preferred most and
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consider their own budget constraints in their decision making.

1.3.2 Estimates

In addition to LML semi-parametric specifications, we also estimated MMNL-N

models with a normal mixing distribution.3 In all models, pairwise correlation of

the parameters is assumed to be zero.

For LML specifications, the mixing distribution is represented by considering

the functional form of z(βR
n ) (see equation 1.4), either as a second-order polynomial

(L) or a one-knot (K) spline. These LML specifications and MMNL-N result in the

same number of identifiable parameters (G)4. For the final model specification, we

also exploited the flexibility of LML and adopted a higher number of identifiable

parameters, z(βR
n ) to be a fourth order polynomial and a spline with three knots,

to check the eventual presence of multimodality in the mixing distribution. If the

number of random parameters is R and there are F fixed parameters, then the

total number of identifiable parameters is: Gpolynomial = L × R + F, and Gspline =

(K + 1) × R + F. The MMNL-N estimates are used to set the grid of the LML

models. The grid boundaries of the random parameters were set to two standard

deviations away from the corresponding MMNL-N mean. Each dimension of the

grid was divided in 1,000 equal-spaced points and 2,000 draws (S n, see equation

3Results of a simple MNL model are also reported as baseline.
4To compare model fit, the Akaike Information Criterion (AIC) = −2 × ln(S LL) + 2 × G and

the Bayesian Information Criterion (BIC) = −2 × ln(S LL) + ln(N) × G, where N is the number of
observations, are used.
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1.7) were drawn out from the multidimensional grid of 103×R points (S ). To derive

standard errors, 100 bootstrap samples were used.

Since all the models are logit based, the estimates are comparable. MMNL-N

was estimated in R using the gmnl package (Sarrias and Daziano, 2016). For LML

estimation, the MATLAB code by (Train, 2016) was used. Note that the original

code was written in willingness-to-pay space; however, we made modifications

in the code to work in preference space. Furthermore, significant modifications to

the code were implemented to allow for the inclusion of fixed parameters in the

LML-FR specification. These major modifications include the appropriate compu-

tation of the likelihood function, its gradient (see equation 1.10), and Ln(βn).

We first assumed all parameters to be random, and later incorporated fixed pa-

rameters when refining this specification. Table 1.2 shows the parameter estimates

and Z-statistic of the first specification. A very low Z-statistic of the standard devi-

ation of the marginal utility of engine power in MMNL-N-1 and variants of LML-1

support preference homogeneity for power across decision-makers in the sample.

The standard deviation of the marginal utility of emission levels in LML-1 (Poly-

order-2) is not statistically significant (see column 7 in Table 1.2), also providing

evidence for further investigation.

As next steps, ASCs and fixed parameters are sequentially incorporated. The

results of intermediate specifications are summarized in Table 1.3. While the mean
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Table 1.2: Estimation Results - All Random Parameters
MNL-1 MMNL-N-1 LML-1 (Poly-order-2) LML-1 (Spline-knot-1)

Estimate Z-stat Estimate Z-stat Estimate Z-stat Estimate Z-stat
Purchase Price -0.398 -1.1 -0.533 -1.2 -0.559 -1.0 -0.505 -1.3
Engine Power 0.243 3.1 0.270 3.2 0.314 6.3 0.315 9.8
Fuel Costs -0.213 -4.8 -0.267 -5.1 -0.262 -4.5 -0.261 -4.9
Emission Levels 0.088 2.2 0.129 2.9 0.123 3.1 0.123 2.7
Fuel Availability 0.732 10.5 1.004 9.3 0.991 9.2 0.995 9.8

SD.Purchase Price - - 2.417 2.6 2.216 2.0 2.211 2.3
SD.Engine Power - - - 0.022 0.1 0.006 0.4 0.020 0.9
SD.Fuel Costs - - 0.487 4.5 0.539 3.1 0.540 3.7
SD.Emission Levels - - 0.228 1.5 0.021 0.3 0.134 1.5
SD.Fuel Availability - - 1.661 12.7 1.596 12.7 1.607 13.7

Mixing parameters 0 10 10 10
Fixed parameters 5 0 0 0

Loglikelihood -4726.07 -4668.87 -4662.87 -4666.29
AIC 9462.13 9357.74 9345.74 9352.58
BIC 9492.89 9419.25 9407.25 9414.09

of the marginal utility of emission levels is significant in MMNL-N-15, inclusion

of ASCs in MNL-2 and MMNL-N-2 (see columns 2–5 in Table 1.3) results into

statiscally insignificant estimates of emissions. MMNL-N-2 confirms the find-

ing of MMNL-N-1 about homogeneity in preferences for engine power. Thus,

specification 3 was obtained by eliminating emission levels and assuming a fixed

marginal utility of engine power (see columns 6 to 11 in Table 1.3).

5In MNL-1 and MMNL-N-1 specification, the significant positive correlation between emis-
sions and vehicle choice may be an artifact of not controlling for ASCs (fuel specific fixed-effects).
Gasoline cars were most frequently selected (37%) and are on average dirtier than their hybrid and
electric counterparts.
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Table 1.3: Estimation Results - Inclusion of ASCs and Fixed Parameters

MNL-2 MMNL-N-2 MMNL-N-3 LML-FR-3 (Poly-order-2) LML-FR-3 (Spline-knot-1)
Estimate Z-stat Estimate Z-stat Estimate Z-stat Estimate Z-stat Estimate Z-stat

Gas:(intercept) -0.091 -1.6 -0.101 -1.7 -0.094 -1.6 -0.097 -1.2 -0.097 -1.2
Gasoline:(intercept) 0.538 9.8 0.574 9.9 0.577 10.2 0.579 5.6 0.580 5.6
Hybrid:(intercept) 0.143 2.5 0.176 3.0 0.176 3.0 0.180 2.5 0.181 2.5

Purchase Price -0.708 -1.9 -1.136 -2.3 -1.198 -2.4 -1.117 -2.1 -1.119 -2.2
Engine Power 0.195 2.5 0.195 2.3 0.184 2.2 0.193 2.6 0.193 2.6
Fuel Costs -0.244 -5.4 -0.283 -5.3 -0.287 -5.4 -0.287 -5.3 -0.287 -5.5
Emission Level 0.002 0.1 0.041 0.9 - - - - - -
Fuel Availability 0.277 3.3 0.511 4.3 0.504 4.3 0.526 4.9 0.525 4.8

SD.Purchase Price - - 3.315 3.6 3.356 3.7 2.775 3.5 2.878 4.0
SD.Engine Power - - 0.018 0.1 - - - - - -
SD.Fuel Costs - - 0.491 4.6 0.494 4.6 0.484 4.4 0.489 4.1
SD.Emission Level - - 0.318 2.7 - - - - - -
SD.Fuel Availability - - 1.669 12.5 1.636 12.6 1.679 13.9 1.685 14.1

Mixing parameters 0 10 6 6 6
Fixed parameters 8 3 4 4 4

Loglikelihood -4639.44 -4581.30 -4581.79 -4580.87 -4580.89
AIC 9294.88 9188.61 9183.57 9181.74 9181.78
BIC 9344.09 9268.58 9245.08 9243.25 9243.29
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Table 1.4: Estimation Results - Final Specification
MMNL-N-4 LML-FR-4 (Poly-order-2) LML-FR-4 (Spline-knot-1) LML-FR-4 (Poly-order-4) LML-FR-4 (Spline-knot-3)

Estimate Z-stat Estimate Z-stat Estimate Z-stat Estimate Z-stat Estimate Z-stat
Gas:(intercept) -0.095 -1.6 -0.099 -1.2 -0.099 -1.2 -0.104 -1.2 -0.107 -1.3
Gasoline:(intercept) 0.576 10.2 0.579 5.7 0.580 5.7 0.566 5.3 0.551 5.4
Hybrid:(intercept) 0.175 3.0 0.181 2.5 0.182 2.5 0.171 2.3 0.154 2.1

Purchase Price -1.199 -2.4 -1.127 -2.1 -1.130 -2.2 -1.220 -2.3 -1.489 -2.8
Engine Power 0.185 2.2 0.195 2.7 0.195 2.7 0.211 2.9 0.202 2.8
Fuel Costs -0.287 -5.4 -0.286 -5.3 -0.287 -5.5 -0.292 -5.6 -0.243 -4.2
Fuel Availability 0.300 2.0 0.316 2.0 0.313 1.9 0.457 2.1 0.642 2.3

Fuel availability ×male 0.416 2.0 0.461 2.5 0.466 2.4 0.359 2.1 0.250 2.3

SD.Purchase Price 3.379 3.7 2.829 3.4 2.929 3.9 3.255 3.7 3.379 5.5
SD.Fuel Costs 0.495 4.6 0.490 4.4 0.495 4.1 0.590 3.6 0.446 3.0
SD.Fuel Availability 1.621 12.5 1.711 13.1 1.719 13.2 1.813 14.6 1.802 13.6

Mixing parameters 6 6 6 12 12
Fixed parameters 5 5 5 5 5

Loglikelihood -4579.71 -4578.29 -4578.31 -4571.95 -4567.71
AIC 9181.42 9178.58 9178.62 9177.90 9169.42
BIC 9249.08 9246.24 9246.28 9282.47 9273.99
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We further sequentially explored specifications where marginal utility of

alternative-specific attributes vary with socio-demographics. Table 1.4 shows es-

timates of the final specification that indicates gender-based statistical differences

in the mean of the marginal utility of fuel availability. The model fit statistics (log-

likelihood, AIC, and BIC) and resultant estimates of MMNL-N-4 are close to that

of LML-FR-4 variants with the same number of parameters (see columns 2-7 in

Table 1.4).

The estimates indicate that the average Chinese car buyer prefers more pow-

erful cars, but also likes to save on fuel costs. A dense fueling network is highly

appreciated, as it guarantees the desired level of flexibility and mobility. As ex-

pected, the mean of the purchase price coefficient is negative but also turns out

be statistical significant, unlike the first specification with all random parameters

(Table 1.2).

The more flexible LML-FR-4 specifications, i.e. with more parameters (see

columns 8–11 in Table 1.4), resulted into a higher loglikelihood at convergence but

worse BIC values than that of specifications with a lower number of parameters.

Thus, LML-FR with a lower number of parameters appears as preferable based

on BIC.6 Whereas the mean and standard deviation estimates was similar for both

specifications, more flexible specifications were able to capture multimodality of

the mixing distribution (see Figures 1.1, 1.2, and 1.3), which cannot be retrieved

with a smaller number of parameters.

6Although BIC is a standard criterion in the literature to compare different models, the use of
BIC can be sometimes misleading in deciding an appropriate model specification.
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Figure 1.1: Histogram of Marginal Utility of Purchase Price

Figure 1.2: Histogram of Marginal Utility of Fuel Cost

Table 1.5 compares computation time of the different LML specifications. In

the standard LML model (LML-1), data setup time is higher than that of LML-
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Figure 1.3: Histogram of Marginal Utility of Fuel Availability

FR, because set up in the case of all random parameters also includes the one-

time calculation of Ln(βn) (see equation 1.2). This calculation is not needed in the

LML-FR case, but we recall that the probability of the sequence of choices needs

to be computed at each iteration. This iterative computation of Ln(βn) in LML-

FR-4 elevates the estimation time per iteration to 31.2 and 55.7 times (and total

estimation time to 16.6 and 41.9 times) that of LML-1 for the polynomial (second

order) and spline (knot 1), respectively. These ratios of estimation time remain

the same for more flexible specifications. In LML-FR-4, specifying the mixing

distribution with a fourth-order polynomial and three-knot spline took around 2.1

and 2.9 times that of second-order polynomial and one-knot spline, respectively.
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Table 1.5: Comparing Computation Time of LML and LML-FR

Data Setup time
(Minutes)

Estimation Time
(Minutes)

Iterations Function Evaluations

LML-1 (Poly-order-2) 0.254 1.13 114 144
LML-FR-4 (Poly-order-2) 0.123 22.92 74 76

LML-1 (Poly-order-4) 0.454 3.13 280 335
LML-FR-4 (Poly-order-4) 0.196 48.82 195 205

LML-1 (Spline-knot-1) 0.070 0.41 75 77
LML-FR-4 (Spline-knot-1) 0.028 20.09 66 68

LML-1 (Spline-knot-3) 0.126 1.34 145 151
LML-FR-4 (Spline-knot-3) 0.049 58.81 224 265

1.4 Conclusions

The recently proposed logit-mixed logit (LML) model (Train, 2016) uses a semi-

parametric representation of unobserved preference heterogeneity that is simple

to implement. This chapter extends LML as derived by Train (2016) –all parame-

ters of interest assumed random– to an LML model with a combination of fixed

and random parameters (LML-FR), implemented in preference space, and mo-

tivated by the consideration fixed components such as alternative specific con-

stants and interactions between preference parameters and socio-demographics.

Whereas computational efficiency is the key feature of LML, we have shown in

this chapter that the incorporation of fixed parameters considerably increases es-

timation time and discussed what provokes the efficiency loss: repeated compu-

tation of choice probabilities in iterative optimization. In fact, in the empirical ap-

plication (stated preferences for alternative fuel vehicles by Chinese consumers;

N=578, T = 6, J = 4), estimation time of the LML model with fixed and random
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parameters is 20-40 times higher than that of the LML model with all parameters

random. This computation time ratio depends on the sample size and can become

excruciating for large sample sizes.

The higher LML-FR computation time is also a concern for hypothesis test-

ing and interval estimation, because bootstrapping is the only way to derive LML

standard errors7. Even if LML-FR loses computational efficiency, its flexibility is

invaluable for empirical applications. As illustrated in this study, LML-FR can re-

trieve multimodality of unobserved preference heterogeneity (c.f. standard para-

metric models that dominate discrete choice modeling that impose unimodality).

The number of parameters and functional form of the mixing distribution, evalu-

ating histogram of random parameters in several scenarios, should be considered

for specification selection in addition to standard metrics such as BIC (Bansal et al.,

2018a).

7If 100 bootstrap samples are taken and LML-FR estimation time for one sample is 15 times that
of the standard LML estimation time, then computation time of the LML-FR standard errors ends
up being 1500 times higher than that of the LML model with all parameters random.
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CHAPTER 2

MINORIZATION-MAXIMIZATION (MM) ALGORITHMS FOR

SEMIPARAMETRIC LOGIT MODELS: BOTTLENECKS, EXTENSIONS,

AND COMPARISONS

2.1 Introduction

2.1.1 Background

With the increase in computation power during the last decade, the mixed multi-

nomial logit (MMNL) model – a random parameter logit model with parametric

and continuous heterogeneity distributions – is the most commonly used flexible

discrete-choice specification (Train, 2009; McFadden and Train, 2000). The prob-

lem of correctly specifying the heterogeneity (or mixing) distribution of the ran-

dom parameters has received great attention (Hensher and Greene, 2003); how-

ever, there is still no consensus among researchers: restricting the shape of the

mixing distributions can result into wrong signs and overestimation of welfare

measures. Wrong (welfare) estimates can misguide policy and marketing deci-

sions (Fosgerau, 2006; Cherchi and Polak, 2005). To overcome the problem of pre-

suming the shape of the mixing distribution, differing specifications with semi- or

nonparametric mixing distributions have been proposed. Vij and Krueger (2017)

and Bhat and Lavieri (2017) provide a detailed review of advancements in para-

metric and semiparametric mixing distributions under extreme-value-distributed
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(logit kernel) and normally-distributed (probit kernel) error structures. In general,

estimation of these flexible1 models is complex and computationally expensive.

This study focuses on estimation of two state-of-the-art semiparametric logit

models, namely the logit-mixed-logit (LML) and mixture-of-normals multino-

mial logit (MON-MNL) models, especially in the context of the promising perfor-

mance of an alternative iterative optimization method with minimal coding, the

minorization-maximization algorithm that will be introduced below, as reported

for mixed logit (James, 2017).

The logit-mixed-logit model (Train, 2016) generalizes many previous semi-

parametric models including Bajari et al. (2007), Fosgerau and Bierlaire (2007),

Train (2008), and Fox et al. (2011) (cf. Bhat, 1997). In LML, a finite parameter

space is divided into a discrete multidimensional grid (cf. Train, 2008). Whereas

Train (2008) considers the probability mass at each discrete point as a parameter

of interest, LML reduces the number of parameters by specifying this probability

using a logit link. In Monte Carlo studies, Bansal et al. (2018a) and Franceschi-

nis et al. (2017) successfully tested flexibility of LML as the model could retrieve

a series of continuous parametric mixing distributions (bi-modal, tri-modal, log-

normal, and uniform) much better than parametric counterparts. The maximum

simulated likelihood estimator (MSLE) of LML is much faster than that of para-

metric models, but computation of standard errors requires bootstrapping. Fur-

thermore, the computational efficiency of point estimation is lost by a factor of 15

1Model flexibility understood as the capacity to represent unobserved preference heterogeneity.
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to 30 when fixed parameters are introduced (Bansal et al., 2018b), and computa-

tional efficiency becomes much worse when standard errors are derived.

The mixture-of-normals multinomial logit also offers a flexible representation

of unobserved preference heterogeneity. The premise of MON-MNL2 is that any

continuous distribution can be approximated to a given degree of accuracy by a

discrete mixture of normals (Ferguson, 1973). Prespecifying the number of mix-

ture components (or classes3) imposes a heterogeneity structure, but unlike LML

there is no need of predefining the parameter space. Resource-intensive boot-

strapping to compute standard errors is not needed in MON-MNL either. In

a Monte Carlo study, Fosgerau and Hess (2009) found that MON-MNL outper-

formed parametric specifications in all scenarios, ranging from retrieving the most

trivial uniform distribution to the most complex multimodal distribution. Keane

and Wasi (2013) further supported the superiority of MON-MNL in an extensive

study of 10 stated preference datasets. However, only a handful of empirical stud-

ies have used MON-MNL, possibly due to the complexity of the analytical gra-

dient of the loglikelihood and covergence problems when using numerical gra-

dients. For instance, Fosgerau and Hess (2009) pointed out that MSLE led into

troubles for more than 2 normal components in the mixing distribution. Whereas

Keane and Wasi (2013) did not explicitly mention any such estimation problem,

the authors set bounds on some parameters and also imposed hard constraints on

the variance-covariance matrix of each component of the mixture.

2MON-MNL was labeled Mixed-Mixed Logit by Keane and Wasi (2013) and Latent Class Mixed
Multinomial Logit model by Greene and Hensher (2013).

3The mixture components can also be interpreted as classes as in a latent class logit model.
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Among frequentist methods to estimate logit models, researches have explored

iterative optimation methods. Within this class of methods, the expectation-

maximization (EM) algorithm has been reported (Bhat, 1997; Cherchi and Gue-

vara, 2012; Sohn, 2017) to outperform MSLE in numerical stability (i.e., less sen-

sitivity to initial values), empirical identification (i.e., avoiding an invertible Hes-

sian matrix), and estimation simplicity. Whereas MSLE directly maximizes the

loglikelihood function using quasi-Newton methods, the simplicity of EM stems

from iteratively maximizing a simpler surrogate function and update parameters

while maintaining monotonic improvements in the loglikelihood (Dempster et al.,

1977; McLachlan and Krishnan, 2007). Furthermore, iterative parameter updates

of the EM algorithm are either closed-form or straightforward econometric prob-

lems that can be solved using standard statistical packages (Train, 2008; Sohn,

2017). EM also provides a convenient parameterization of the complete-data like-

lihood function without worrying about over-identification (Ruud, 1991). In addi-

tion to these nice statistical properties, EM also converges quickly to the neighbor-

hood of the optima. However, EM is plagued by slower convergence within the

optimum neighborhood (Dempster et al., 1977). In fact, the computational per-

formance of EM largely hinges upon the underlying data generating process and

how well EM re-characterizes the objective function. More specifically, if the com-

plete data model provides much more information about the parameter than the

incomplete data model, then the EM algorithm is generally slow (Meilijson, 1989).

Ruud (1991) suggested designing hybrid algorithms such that EM starts the max-

imization process and a Newton-type algorithm finishes it. In fact, Bhat (1997)

25



www.manaraa.com

could achieve computational efficiency and numerical stability in latent class logit

estimation by shifting from EM to quasi-Newton methods when the difference in

the loglikelihood of successive iterations achieved a given precision.

For some model specifications EM does not provide closed-form updates (the

source of the EM benefits) for all parameters, making EM a rather slow method

for estimation. For this reason, researchers have been exploring other alterna-

tive estimation methods. EM is actually nested in the minorization-maximization

(MM) family of iterative optimization methods (Lange et al., 2000). Note that if all

iterative parameter updates in EM are closed-form (optimization-free), MM and

EM are basically the same method. MM as proposed by James (2017) replaces

iterative optimization of a weighted MNL model with a closed-form parameter

update for a mixed logit specification with fixed and random parameters. The

MM algorithm in that context was 5-8 times faster than standard EM in general,

and outperformed MSLE in some panel-data settings (James, 2017).

2.1.2 Research Gap and Contribution

Whereas Train (2008) proposed EM for an MON-MNL specification with all

marginal-utility parameters being random, no such algorithm exists for LML.

Even if EM for the all-random-parameters MON-MNL requires just computing

sums and multiplications to iteratively update parameters, it has not been further

used in practice. Moreover, the consideration of some parameters being fixed may
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play against simplicity of estimation of flexible discrete choice models, as noted

for EM in the mixed logit work of James (2017).

In addition to focus on a general utility specification with fixed and random

parameters due to the implementation challenges that may appear in iterative op-

timization methods, we argue that inclusion of fixed parameters is important for

empirical reasons. Ruud (1996) suggests to hold at least one coefficient fixed in the

mixed logit model because a specification with all random coefficients is almost

unidentified empirically. Moreover, Train (2009) recommends to keep alternative-

specific constants fixed due to the same reason. Empirical identification also re-

stricts parameters to be fixed in the case of interactions with sociodemographics

that represent taste variation with respect to a (random) parameter.4 Finally, will-

ingness to pay for a specific covariate may not vary across the population and

thus the estimated parameter may be just non-random.

The main contribution of this chapter is to derive MM algorithms (including

standard EM) to estimate semiparametric logit models under general utility spec-

ifications, identify key bottlenecks in the MM algorithm with all closed-form up-

dates, propose a faster-MM algorithm and illustrate its parallel implementation,

and finally compare the different variants of EM and MM algorithms with quasi-

Newton methods in a Monte Carlo study and an empirical study. Since our con-

tribution is fourfold, details are discussed below.
4Consider an indicator variable for males Dmale and a taste-variation-specification of the type

(βik + βmaleDmale)xik. While βik can be considered random, for empirical identification βmale would
be considered fixed in applied work.
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The first contribution of this study is to derive standard EM for LML (cf. Bhat,

1997, for a latent class logit model) and to extend EM for MON-MNL under more

general utility specifications. Even though the proposed EM algorithm for LML

and MON-MNL can be implemented easily in any standard statistical package,

we show that – just as in mixed logit, although the equations are different – EM in-

trinsically involves computationally burdensome optimizations of weighted MNL

(WMNL) loglikelihood functions (see sections 2.2.2 and 2.3.2). Whereas the EM

algorithm for LML involves iterative estimation of two WMNL models, we show

that EM for MON-MNL requires as many WMNL loglikelihood maximizations

at each iteration as the number of mixture components. We also show that these

resource-intensive computations may even rule out EM as a feasible option to es-

timate semiparametric logit models in practice.

Given the computational performance issues of EM discussed above, the sec-

ond contribution of this study is to derive MM for both LML and MON-MNL mod-

els. We discuss and illustrate several advantages of MM over EM in section 2.4.

In particular, optimization-free (closed-form) parameter updates in MM makes it

attractive since it can be easily integrated into flexible5 estimation software. Fur-

thermore MM just requires storage of sufficient statistics, and we thus demon-

strate how parallel computation can result into 80% reduction in estimation time.6

Although we were first expecting to see computational efficiency improvements

5Code flexibility is understood as the capacity of software to allow the analyst to directly specify
the desired loglikelihood, avoiding restrictions such as only linear-in-parameter utility specifica-
tions.

6The EM algorithm can also be parallelized, but storage and communication of large multi-
dimensional arrays neutralizes the computational gains of parallelization.
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such as the ones observed by James (2017) for mixed logit, MM computation time

for LML was disappointing even after parallel estimation. What happens is that

the MM algorithm’s lower bound approximation is very poor if the WMNL model

has a large choice set (see Böhning and Lindsay, 1988), which is by construction

exactly the case of LML: the number of “alternatives” in the WMNL update is

equal to the number of random draws (in the order of 1000s) taken from the mul-

tidimensional grid that represents the parameter space. In fact, through a Monte

Carlo study, we found that MM for MON-MNL and even the parametric mixed

logit model also encounter computational failure for a large choice set. This issue

is critical because large choice sets are often encountered in revealed preference

studies, precisely in applied work where alternative estimation methods such as

EM and MM are needed (von Haefen and Domanski, 2018).

The third contribution of this study is the identification of bottlenecks in the

implementation of MM and provide improvements. Following the method sug-

gested by Böhning and Lindsay (1988), we propose a faster-MM algorithm in

which the embedded step-size is corrected. The proposed faster-MM algorithm

is general and useful to improve the lower-bound approximation of any WMNL

loglikelihood while keeping the simplicity of MM. However, the computational

gains largely depend on the cardinality of the choice set. For example, faster-MM

could reduce computation time of MM for an LML model by a factor of around

100 due to a very high (order of 1000s) cardinality of the choice set of the iterative

WMNL.
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The fourth contribution of this study is to highlight shortcomings and advan-

tages of the existing and proposed estimation methods using an extensive Monte

Carlo study and an empirical application to estimate consumer’s willingness to

adopt electric motorcycles in Solo, Indonesia.

The remaining of the chapter is organized as follows: sections 2 and 3 derive

the iterative-optimization estimation algorithms for LML and MON-MNL; section

4 draws insights from the derived procedures; section 5 describes the Monte Carlo

studies and discusses the findings; section 6 focuses on the empirical study; and

conclusions are detailed in section 7.

2.2 Iterative Optimization Methods to Estimate the Logit Mixed

Logit (LML) Model

2.2.1 Logit-Mixed Logit (LML)

Let N be the number of decision-makers in a sample where each agent faces T

choice situations and chooses a utility-maximizing alternative from a set of J al-

ternatives. The conditional indirect utility of decision-maker i from making choice

j in choice situation t is:

Uit j = xT
it jα + zT

it jβi + εit j, (2.1)
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where i ∈ {1, . . . ,N}, j ∈ {1, . . . , J}, and t ∈ {1, . . . ,T }. We consider the general case

in which attributes can be partitioned between those having fixed parameters (x)

and those with random parameters (z) with a general continuous heterogeneity

distribution.7 The attribute vector xit j thus has a fixed preference parameter vec-

tor α, whereas zit j has a random, individual-specific preference vector βi. The

preference shock εit j is independent across individuals, choices and time, and is

identically distributed Type-I Extreme Value. Thus, the probability of choosing

alternative j by individual i in choice situation t, conditional on βi, has a logit link:

Pit j(α,βi) =
exp

(
xT

it jα + zT
it jβi

)
∑J

k=1 exp
(
xT

itkα + zT
itkβi

) . (2.2)

If individual i chooses alternative j in choice situation t, one can define the

choice indicator dit j = I(j chosen|i, t). For the sequence of choices made by individ-

ual i, the conditional likelihood Li(α|βi) is:

Li(α|βi) =

T∏
t=1

J∏
j=1

[Pit j(α,βi)]dit j . (2.3)

In the LML model, preferences variations are represented using a discrete mix-

ing distribution over a finite support set S . The probability of the random βi being

equal to a specific value βir is represented by the following logit link (hence the

logit-mixed logit name proposed by Train, 2016):

wi(βi = βir|φ) =
exp

(
y(βir)Tφ

)∑
s∈S exp (y(βis)Tφ)

, (2.4)

7As discussed in the introduction, the consideration of a combination of fixed and random
parameters not only is empirically justified but also offers estimation challenges that need to be
addressed.
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where φ is a vector of parameters and y(βr) is a vector-valued function (e.g. spline,

step, or polynomial function) that captures the shape of the mixing distribution.

If ψ = {α,φ} summarizes the parameters of interest, the unconditional likeli-

hood Pi(ψ) of agent i is:

Pi(ψ) =
∑
r∈S

Li(α,βir)wi(βir|φ), (2.5)

and the corresponding loglilkelihood `(ψ) of the sample is:

`(ψ) =

N∑
i=1

ln
(∑

r∈S

Li(α,βir)wi(βir|φ)
)
. (2.6)

Maximizing the loglikelihood becomes intractable in practice if the entire sup-

port set S is used. Therefore, a large subset of parameter vectors (for example,

2000 vectors) for each decision-maker is sampled from the support set (see sec-

tions 2.5.1 and 2.6 for details) to derive the maximum simulated likelihood estima-

tor of the model. The standard errors of the parameters of interest are calculated

through bootstrapping.

2.2.2 LML Estimation using the EM Algorithm

The EM algorithm was originally developed to deal with missing data (Dempster

et al., 1977). Since several loglikelihood maximization problems can be viewed

as a missing data problem, the EM algorithm has been widely used in different

disciplines (McLachlan and Krishnan, 2007). The EM algorithm is a two-step –
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the expectation (E) step and the maximization (M) step – iterative procedure. In

the E-step, data are completed (in a probabilistic sense) conditional on previous

iteration parameters. In the M-step, parameters are optimized conditional on the

completed data. The algorithm terminates when difference in parameter estimates

of two consecutive iterations is very small.

Bhat (1997) first introduced the EM algorithm into the discrete choice litera-

ture for the estimation of models with endogenous segmentation or latent classes.

Since LML generalizes the latent class logit model, the missing data for the EM

algorithm in LML estimation are the parameters of each agent in each draw (βir)

just as originally suggested in Bhat (1997). As a result, the M-step Q(ψ|ψm) and

E-step of the EM algorithm for LML model are:

E-step : hir(βir|ψ
m) =

Li(αm,βir)wi(βir|φ
m)∑

r∈S Li(αm,βir)wi(βir|φm)
=
Li(αm,βir)wi(βir|φ

m)
Pi(ψm)

, (2.7)

M-step : Q(ψ|ψm) =

N∑
i=1

∑
r∈S

hir(βir|ψ
m) ln

(
Li(α,βir)wi(βir|φ)

)
, (2.8)

where hir(βir|ψ
m) are weights that are computed at each iteration (ψm+1) using the

previous iteration (ψm). The M-step surrogate function is additive separable in the

fixed parameters (α) and the parameters defining the shape of the mixing distri-

bution (φ):

Q(ψ|ψm) =

N∑
i=1

∑
r∈S

hir(βir|ψ
m) ln(Li(α,βir)) +

N∑
i=1

∑
r∈S

hir(βir|ψ
m) ln(wi(βir|φ)). (2.9)
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As expected, optimizing these two independent functions separately is much

easier than the joint maximization problem. The EM update equations are:

Q(α|ψm) =

N∑
i=1

∑
r∈S

hir(βir|ψ
m)ln(Li(α,βir)) =⇒ αm+1 = argmax

α
Q(α|ψm) (2.10)

Q(φ|ψm) =

N∑
i=1

∑
r∈S

hir(βir|ψ
m)ln(wi(βir|φ)) =⇒ φm+1 = argmax

φ
Q(φ|ψm), (2.11)

where Q(α|ψm) represents a weighted multinomial logit loglikelihood (with fixed

utility weights α) and Q(φ|ψm) represents a very similar expression to the weighted

multinomial logit loglikelihood (with characteristics y(βir) and weights φ). If all

utility parameters are random, the algorithm remains the same after removing

equation 2.10 to update the fixed parameters. The complete EM algorithm for the

LML model is summarized below:

2.2.3 LML Estimation using the MM Algorithm

In the EM algorithm for LML, numerical maximization of Q(α|ψm) and Q(φ|ψm) at

each iteration can be computationally burdensome. Inspired in the work by James

(2017) for mixed logit, we propose the use of the minorization-maximization

(MM) algorithm (Lange et al., 2000), where closed-form surrogate functions

[Q̃(α|ψm), Q̃(φ|ψm)] create closed-form updates of the parameters (ψ = {α,φ}) with-

out solving any optimization problem.
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Algorithm 1: EM for the LML Model

Initialization
For each i, draw βir, r = 1, . . . ,R (e.g., R = 2000), from the support set S ;
Compute y(βir) using sieve functions such as spline;
Initialize parameters m = 0 : ψ0 = {α0,φ0}

while ‖ψm+1 − ψm‖∞ < Tol. do
Step 1: Calculation of the weight [hir(βir|ψ

m)];
Calculate Pit j(αm,βir) for each βir using Eq. 2.2;
Calculate Li(αm,βir) for each i and for each βir using Eq. 2.3;
Calculate wi(βir|φ

m) for each i and for each βir using Eq. 2.4;
Calculate hir(βir|ψ

m) for each βir using Eq. 2.7;
Step 2: Update parameters;
Update αm+1 using Eq. 2.10;
Update φm+1 using Eq. 2.11;

end

The new surrogate functions are derived using a quadratic lower bound ap-

proximation of the Hessian.8 This approximation can be used to reduce the op-

timization burden of any EM algorithm which iteratively optimizes the loglikeli-

hood of a weighted MNL model.9

Updating φ

The new surrogate function to update φ using the approximation is:

Q̃(φ|ψm) = Q(φm|ψm) + (φ − φm)T gm
φ +

(φ − φm)T Bm
φ (φ − φm)

2
, (2.12)

8A function can be bounded below by a quadratic approximation if there exists a global lower
bound to the second derivative (Böhning and Lindsay, 1988). In fact, James (2017) proposed the
MM algorithm to estimate the MMNL model exploiting the same idea.

9However, MM estimation time can be higher than EM estimation time, or vice versa, depend-
ing on the tightness of the Hessian approximation.
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wheregm
φ =

∂Q(φ|ψm)
∂φ

∣∣∣∣∣
φ=φm

and Bm
φ ≤

∂2Q(φ|ψm)
∂φ2 .

Thus,

φm+1 = φm − [Bm
φ ]−1 gm

φ . (2.13)

This new update equation of φ is a single Newton step that only requires the

gradient and lower bound on the Hessian of the EM surrogate function Q(φ|ψm),

which are computed as follows (see Böhning and Lindsay, 1988, for details):

gm
φ =

∂Q(φ|ψm)
∂φ

∣∣∣∣∣
φ=φm

=

N∑
i=1

∑
r∈S

hir(βir|ψ
m)

(
y(βir) −

∑
v∈S

[y(βiv)wi(βiv|φ
m)]

)
(2.14)

Hm
φ =

∂2Q(φ|ψm)
∂φ2

∣∣∣∣∣∣
φ=φm

= −

N∑
i=1

∑
r∈S

hir(βir|ψ
m)

[∑
v∈S

y(βiv)[y(βiv)]T wi(βiv|φ
m)−

(∑
v∈S

y(βiv)wi(βiv|φ
m)

)(∑
v∈S

[y(βiv)]T wi(βiv|φ
m)

)]
(2.15)

Bm
φ = −

1
2

N∑
i=1

∑
r∈S

hir(βir|ψ
m)

[∑
v∈S

y(βiv)[y(βiv)]T −
1
R

(∑
v∈S

y(βiv)
)(∑

v∈S

[y(βiv)]T
)]

(2.16)

∑
r∈S

hir(βir|ψ
m) = 1 =⇒ (2.17)

Bm
φ = Bφ = −

1
2

N∑
i=1

[∑
v∈S

y(βiv)[y(βiv)]T −
1
R

(∑
v∈S

y(βiv)
)(∑

v∈S

[y(βiv)]T
)]
.

Updating α

Similarly we take lower bound approximation of Q(α|ψm) (see equation 2.12) and

the update equation for α is:

αm+1 = αm − [Bm
α ]−1 gm

α . (2.18)
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The gradient gm
α in this case is:

gm
α =

∂Q(α|ψm)
∂α

∣∣∣∣∣
α=αm

=

N∑
i=1

∑
r∈S

hir(βir|ψ
m)

[ T∑
t=1

J∑
j=1

xit j

(
dit j − Pit j(αm,βir)

)]
, (2.19)

and the Hessian:

Hm
α = −

N∑
i=1

∑
r∈S

hir(βir|ψ
m)

{ T∑
t=1

[ J∑
j=1

xit jxit j
T Pit j(αm,βir)−

( J∑
j=1

xit jPit j(αm,βir)
)( J∑

j=1

xit jPit j(αm,βir)
)T

]}
. (2.20)

∑
r∈S

hir(βir|ψ
m) = 1 =⇒

Bm
α = Bα = −

1
2

N∑
i=1

{ T∑
t=1

[ J∑
j=1

(xit jxT
it j) −

1
J

( J∑
j=1

xit j

)( J∑
j=1

xit j

)T ]}
. (2.21)

All the steps of the MM algorithm to estimate the LML model are given below:

2.2.4 LML Estimation using the Faster-MM Algorithm

It is important to note that the number of ‘alternatives’ in equation 2.11 (updating

φ) that stems from a logit link is equal to the number of draws R (size of the esti-

mation subset) for each agent from the support set S . For a good coverage of the

parameter space, R should be large (for example, R = 2000). Böhning and Lindsay

(1988) highlight the fact that if the number of alternatives is large, the approxima-

tion of the Hessian in equation 2.17 becomes Bm
φ = Bφ = −1

2

∑N
i=1

∑
v∈S y(βiv)[y(βiv)]T ,
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Algorithm 2: MM for the LML Model

Initialization
For each i, draw βir, r = 1, . . . ,R (e.g., R = 2000), from the support set S ;
Compute y(βir) using Sieve functions such as spline;
Compute B−1

φ using Eq. 2.17
Compute B−1

α using Eq. 2.21
Initialize parameters m = 0 : ψ0 = {α0,φ0}

while ‖ψm+1 − ψm‖∞ < Tol. do
Step 1: Calculation of the weight [hir(βir|ψ

m)] ;
Calculate Pit j(αm,βir) for each βir using Eq. 2.2;
Calculate Li(αm,βir) for each i and for each βir using Eq. 2.3;
Calculate wi(βir|φ

m) for each i and for each βir using Eq. 2.4;
Calculate hir(βir|ψ

m) for each βir using Eq. 2.7 ;
Step 2: Update parameters ;
Compute gm

φ using Eq. 2.14 and update φm+1 using Eq. 2.13;
Compute gm

α using Eq. 2.19 and update αm+1 using Eq. 2.18;
end

which is a very crude approximation. This observation is illustrated in the Ap-

pendix B using a sketch of the proof for the lower bound of hessian and also in a

Monte Carlo study. Specifically, Böhning and Lindsay (1988) mentions the prob-

lem of the curvature of the loglikelihood varying sharply as a function of initial

values and direction. With a modified step-size, as suggested by the authors, for

a broad family of statistical models, we propose the following simple algorithmic

improvement to update φ:

Step 1: Compute the step size for MM: µm
φ = −[Bm

φ ]−1 gm
φ .

Step 2: Modify the step size: ζm
φ = ηm

φµ
m
φ .

Step 3: Update φ : φm+1 = φm + ζm
φ .
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Intuitively, in this faster-MM algorithm the original step size µm
φ is augmented

by a positive multiplier ηm
φ , and the modified step size ζm

φ is then used to update φ.

The use of ζφ, instead of µm
φ , not only maintains monotonic improvements in the

loglikelihood, but also ensures fast convergence of the MM algorithm for LML

(see simulation results for LML in section 2.5.1 ). This faster-MM method can be

extended to improve the convergence rate of MM estimation of logit-type models

with large choice sets in general:10 the MM algorithm for mixed logit as originally

implemented by James (2017) is actually extremely slow if the number of alter-

natives is large and our proposed faster-MM algorithm can provide significant

improvements (see section 2.5.2 for the simulation results). We also derive the

faster-MM for MON-MNL (section 2.3.4).

Computation of ηm
φ

Böhning and Lindsay (1988) suggest writing a standard Taylor series expansion

and then solving for the scalar multiplier. We derive the expression for ηm
φ exactly

following those steps:

Q(φm+1) − Q(φm) = Q(φm + ηm
φµ

m
φ ) − Q(φm) ≥ ηm

φ (µm
φ )T gm

φ +
(ηm
φ )2(LB)

2
. (2.22)

Solving for ηm
φ :

ηm
φ = −

(µm
φ )T gm

φ

LB
, (2.23)

10For example, in the case of 4 alternatives, the multiplier ηm
φ can be of order 1.2, which is in-

signifcant for improving computational efficiency.
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where LB is a lower bound on the quadratic form of the Hessian that can be cal-

culated as:

LB = −

N∑
i=1

∑
r∈S

hir(βir|ψ
m)LBi

φ,

where LBi
φ is a lower bound on the quadratic form of Hm

φ,ir and is calculated as

follows11:

LBi
φ = .5(m2

i + M2
i − .5((mi + Mi)2))

where mi = min
1≤v≤R

((µm
φ )T y(βiv)) and Mi = max

1≤v≤R
((µm

φ )T y(βiv)).
(2.24)

Recalling that the Hessian is:

Hm
φ =

∂2Q(φ|ψm)
∂φ2

∣∣∣∣∣∣
φ=φm

= −

N∑
i=1

∑
r∈S

hir(βir|ψ
m)Hm

φ,ir, (2.25)

and recognizing that
∑

r∈S hir(βir|ψ
m) = 1, it is possible to implement the lower

bound as:

LB = −

N∑
i=1

LBi
φ. (2.26)

Note that Böhning and Lindsay (1988) suggested to use LB =
∑N

i=1 LBi
φ in the

original paper for specifications such as the Cox proportional hazards model.

When we first implemented the bound without the negative sign, the MM al-

gorithm lost monotonicity and was not converging. In fact, the loglikelihood was

fluctuating randomly, instead of increasing at each iteration. We soon realized

that monotonocity would be ensured if LB = −
∑N

i=1 LBi
φ. With the corrected sign

of LB, as shown in equation 2.26, the MM algorithm not only converged but also

11See equation 2.15 and equations 5.5 - 5.7 of Böhning and Lindsay (1988) for further informa-
tion.
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convergence was achieved much faster, as we were expecting. To make sure intu-

ition about the sign of the bound was correct, we provide a formal proof below.

Checking the sign of LB. As mentioned above, irrespective of the chosen sample,

the sign of ηm
φ must be positive to ensure monotonicity of the algorithm. We now

show that LB = −
∑N

i=1 LBi
φ (as opposed to the inverse LB =

∑N
i=1 LBi

φ) fulfills this

requirement. In effect,

ηm
φ = −

(µm
φ )T gm

φ

LB
= −

(−[Bm
φ ]−1 gm

φ )T gm
φ

LB
=

(gm
φ )T [Bm

φ ]−1 gm
φ

LB
. (2.27)

Consider first the numerator (gm
φ )T [Bm

φ ]−1 gm
φ ≤ 0: since the objective function is

concave, the Hessian is negative semi-definite and thus [Bm
φ ]−1 is negative semi-

definite.

Consider now the denominator LB. Since the objective function is concave,
∂2Q(φ|ψm)

∂φ2 (see Equation 2.25) is negative semi-definite. Additionally, hir(βir|ψ
m) is a

positive weight and thus Hm
φ,ir is a positive semi-definite matrix. Since LBi is a

lower bound on the quadratic form of Hm
φ,ir, it has to be non-negative. If LB =∑

i LBi, LB ≥ 0 =⇒ ηm
φ ≤ 0, but if LB = −

∑
i LBi, then LB ≤ 0 =⇒ ηm

φ ≥ 0 as

needed. (Q.E.D.)
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2.3 Iterative Optimization Methods to Estimate MON-MNL

2.3.1 Mixture-of-normals logit (MON-MNL)

If population has C latent classes (i.e., components in the mixture), utility derived

for individual i of class c from making choice j in choice situation t is:

Uit j = xT
it jαc + zT

it jβ
c
i + εit j, (2.28)

where i ∈ {1, . . . ,N}, j ∈ {1, . . . , J}, t ∈ {1, . . . ,T }, and c ∈ {1, . . . ,C}. The alternative-

specific characteristics xit j have a fixed utility weight vector αc, and zit j has an

individual-specific parameter vector βc
i (specific to class c). The taste shock εit j is

independent and identically distributed Type-I Extreme Value. For the sequence

of choices made by individual i, the conditional likelihood Li(αc,β
c
i ) is:

Li(αc,β
c
i ) =

T∏
t=1

J∏
j=1

[Pit j]dit j =

T∏
t=1

J∏
j=1

[ exp(xT
it jαc + zT

it jβ
c
i )∑J

k=1 exp(xT
itkαc + zT

itkβ
c
i )

]dit j

. (2.29)

Consider a latent class membership variable S = (S 1, . . . , S N) such that : P(S i =

c) = sc i ∈ {1, . . . ,N}, where 0 ≤ sc ≤ 1 and
∑C

1 sc = 1. Conditional on class

membership, the random parameter βc
i is normally distributed with mean γc and

variance-covariance matrix ∆c. Thus the loglilkelihood `(ψ) of the sample in terms

42



www.manaraa.com

of the unconditional likelihood Pi(ψ) of individual i is:

`(ψ) =

N∑
i=1

ln
(
Pi(ψ)

)
=

N∑
i=1

ln
( C∑

c=1

{
sc

[ ∫
β

Li(αc,β) f (β|γc,∆c)dβ
]})

where ψ = {α1, s1,γ1,∆1, . . . ,αC, sC,γC,∆C}

(2.30)

2.3.2 MON-MNL Estimation using the EM Algorithm

Following Train (2008), the E-step and the objective function of the M-step Q(ψ|ψm)

of the EM algorithm for MON-MNL model are:

E-step : hic(.|ψm) =
sm

c Li(αm
c ,β) f (β|γm

c ,∆
m
c )

Pi(ψm)

M-step : ψm+1 = argmax
ψ

N∑
i=1

C∑
c=1

[ ∫
β

hic(.|ψm)ln
(
scLi(αc,β) f (β|γc,∆c)

)
dβ

]
.

(2.31)

In the E-step, hic(.|ψm) can be recognized as weight. The derived parameter

M-step update equations are:

sm+1
c =

∑N
i=1

∑R
r=1 hicr(.|ψm)∑N

i=1
∑C

v=1
∑R

r=1 hivr(.|ψm)
(2.32)

γm+1
c =

∑N
i=1

∑R
r=1

[
hicr(.|ψm)βm

icr
]∑N

i=1
∑R

r=1 hicr(.|ψm)
,

∆m+1
c =

∑N
i=1

∑R
r=1

[
hicr(.|ψm)

{
(βm

icr − γ
m+1
c )(βm

icr − γ
m+1
c )T

}]
∑N

i=1
∑R

r=1 hicr(.|ψm)
,

(2.33)

αm+1
c = argmax

αc

Q(αc|ψ
m) = argmax

αc

N∑
i=1

R∑
r=1

[
hicr(.|ψm)ln

(
Li(αc,βicr)

)]
. (2.34)
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2.3.3 MON-MNL Estimation using the MM Algorithm

Updating the equation of αc in the EM algorithm involves optimization of the

weighted likelihood of standard logit models at each iteration. With the increase

in the number of classes C, the EM algorithm will get worse due to a need of

solving C optimization problems at each iteration. So we take the lower bound

approximation of Q(αc|ψ
m) (see equation 2.12) and the resultant αc updates are:

αm+1
c = αm

c − [Bm
αc

]−1 gm
αc
, (2.35)

where

gm
αc

=
∂Q(αc|ψ

m)
∂αc

∣∣∣∣∣
αc=αm

c

=

N∑
i=1

R∑
r=1

hicr(.|ψm)
[ T∑

t=1

J∑
j=1

xit j

(
dit j − Pit j(αm

c ,βicr)
)]

(2.36)

The Hessian is:

Hm
αc

= −

N∑
i=1

R∑
r=1

hicr(.|ψm)
{ T∑

t=1

[ J∑
j=1

xit jxit j
T Pit j(αm

c ,βicr)−

( J∑
j=1

xit jPit j(αm
c ,βicr)

)( J∑
j=1

xit jPit j(αm
c ,βicr)

)T
]}

(2.37)

Bm
αc

= −
1
2

N∑
i=1

R∑
r=1

hicr(.|ψm)
{ T∑

t=1

[ J∑
j=1

(xit jxT
it j) −

1
J

( J∑
j=1

xit j

)( J∑
j=1

xit j

)T ]}
(2.38)
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R∑
r=1

hicr(βicr|ψ
m) =

∑R
r=1 sm

c Li(αm,βicr)∑C
v=1

{
sm

v

[∑R
r=1Li(αm,βicr)

]} , 1

=⇒ Bm
αc

=

N∑
i=1

R∑
r=1

hicr BF
αc

where BF
αc

= −
1
2

{ T∑
t=1

[ J∑
j=1

(xit jxT
it j) −

1
J

( J∑
j=1

xit j

)( J∑
j=1

xit j

)T ]}
.

(2.39)

The steps of the MM algorithm to estimate MON-MNL are as follows:

Algorithm 3: MM for the MON-MNL Model

Initialization
Compute BF

αc
using Eq. 2.39 for all c = 1, . . . ,C

Initialize parameters m = 0 : ψ0 = {α0
1, s

0
1,γ

0
1,∆

0
1, . . . ,α

0
C, s

0
C,γ

0
C,∆

0
C}

while ‖ψm+1 − ψm‖∞ < Tol. do
Step 1: Weight [hicr(.|ψm)] Calculation ;
For each i, for each class c, take R draws, with label βicr, fromN(γm

c ,∆
m
c );

Calculate Li(αm
c ,βicr) for each i using Eq. 2.29;

Calculate hicr(.|ψm) using Eq. 2.31 ;
Step 2: Update parameters ;
Update share of each class (sm+1

c ) using Eq. 2.32;
Update < γc,∆c >

m+1 for c = 1, . . . ,C using Eq. 2.33;
Update αm+1

c for c = 1, . . . ,C using Eq. 2.35 ;
end

2.3.4 MON-MNL Estimation using the faster-MM Algorithm

If the number of alternatives is large, similar to LML, the lower bound quadratic

approximation in equation 2.38 becomes Bm
αc

= −1
2

∑N
i=1

∑R
r=1 hicr(.|ψm)

{∑T
t=1

∑J
j=1(xit jxT

it j)
}
,
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which is a very crude approximation. Therefore, we now extend the faster-MM

algorithm to estimate a MON-MNL model with an algorithmic improvement to

the update of αc.

Step 1: Compute step length for MM: µm
αc

= −[Bm
αc

]−1 gm
αc

.

Step 2: Modify the step length: ζm
αc

= ηm
αc
µm
αc

.

Step 3: Update αc : αm+1
c = αm

c + ζm
αc

.

We compute ηm
γ using:

ηm
αc

= −
(µm

αc
)T gm

αc

LB
, (2.40)

where LB is the lower bound of the quadratic form of the Hessian.12

LB = −

N∑
i=1

R∑
r=1

hicr(.|ψm)
( T∑

t=1

LBit
αc

)
, (2.41)

where LBit
αc

is a lower bound on the quadratic form of Hm
αc,i jt. Equation 2.42 is

obtained after rewriting equation 2.37:

Hm
αc

=

N∑
i=1

R∑
r=1

hicr(.|ψm)
( T∑

t=1

Hm
αc,i jt

)
(2.42)

The lower bound LBit
αc

is then calculated as follows:

LBit
αc

= .5(m2
it + M2

it − .5((mit + Mit)2))

where mit = min
1≤ j≤J

((µm
αc

)T xit j and Mit = max
1≤ j≤J

((µm
αc

)T xit j

(2.43)

12Note that
∑R

r=1 hicr(.|ψm) , 1 for the MON-MNL model.
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2.3.5 Standard Errors

Train (2009) and James (2017) suggest to compute the information matrix using

cross-product of the M-step scores, which can further be used to obtain standard

errors of EM and MM estimates. We derive equations 2.44 and 2.45 to compute

simulated scores for αc and < γc,∆c >, respectively.13

∂Qi(αc|ψ
m)

∂αc
=

R∑
r=1

hicr(.|ψm)
[ T∑

t=1

J∑
j=1

xit j

(
dit j − Pit j(αc,βicr)

)]
(2.44)

∂
[
Qi(γc,∆c|ψ

m)
]

∂γc
= −

R∑
r=1

[
hicr(.|ψm)(∆c)−1(βicr − γc)

]
∂
[
Qi(γc,∆c|ψ

m)
]

∂∆c
=

R∑
r=1

[
hicr(.|ψm)

{
−

1
2
∆−1

c +
1
2
∆−1

c

[
(βicr − γc)(βicr − γc)T

]
∆−1

c

}] (2.45)

In a simulation study, we compared three methods to compute standard er-

rors, namely M-step scores in MM, bootstrapping in MM, and information matrix

in MSLE. The standard error estimates of all three methods matched quiet pre-

cisely for all parameters, except for some (especially off-diagonal) elements of the

variance-covariance matrix (see Table 2.11 in section 2.5.2). However, all standard

error estimates of MM bootstrapping and MSLE matched fairly, raising a question

on using M-step scores to compute standard errors in EM and MM algorithms.

13As an alternative method, bootstrapping also can be used to derive the standard errors, but it
is computationally intensive.
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We further reviewed existing methods to compute standard errors in EM.

Meng and Rubin (1991) suggests to use the SEM algorithm to compute EM stan-

dard errors, but SEM is unattractive due to two reasons (Jamshidian and Jennrich,

2000). First, it requires estimation of the Jacobian and Hessian matrices of the M-

step objective function, which generally involves cumbersome algebraic opera-

tions. Second, SEM is highly sensitive to slower convergence of the algorithm and

can result into very high standard errors. In fact, in simulation studies, Jamshidian

and Jennrich (2000) and Camilleri (2009) found that methods involving the infor-

mation matrix of the complete data loglikelihood (e.g., M-step scores and SEM)

perform poor in practice, as also verified in our simulation study. They suggest

to use the information matrix of the observed (incomplete) loglikelihood at con-

vergence to obtain the correct standard errors of EM. Intuitively, this approach

is analogous to switching from EM or MM to Newton-type methods near con-

vergence, but with the motivation to get correct standard errors instead of faster

convergence. We suggest to pass the EM or MM estimates to the MSLE with nu-

merical gradient routine. This method does not add any algebraic operations in

the original EM or MM algorithm because the loglikelihood is evaluated in the

E-step nonetheless. Mathematical simplicity of MM and EM remains intact at the

cost of higher total computation time (see section 2.5.2).
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2.4 Discussion: advantages and disadvantages of MM over EM

and MSLE

James (2017) shows that, unlike EM and MSLE, the Hessian and its inverse need

to be computed only once in MM and can be reused at each iteration. This feature

makes MM more attractive over other methods when dimensionality of the Hes-

sian is large and inversion is costly. However, we show that this observation is

not universally true. For example, computing the inverse of the Hessians B−1
φ and

B−1
α , and reusing them works favorably in MM for LML. However, the Hessian

Bm
αc

and its inverse need to be computed at each iteration, using equation 2.39, in

MM for MON-MNL. Nonetheless, the entire computational advantage of MM is

not lost because a computationally-intensive part of the Hessian (BF
αc

) can still be

pre-computed in the initialization step.

Since parameter updates in MM just require sufficient statistics and the sample

gradient can be written as the sum (in no specific order) of individual gradients,

MM estimation is suitable for parallel computation. Even the E-step of the EM al-

gorithm is suitable for parallelization, but the optimization problem in the M-step

requires to store weights and simulation draws of the E-step. The communica-

tion overhead and storage of these multi-dimensional arrays in EM neutralize the

potential benefits of parallelization. We would also like to note that the Hessian

and gradient in MSLE can be broken into an unordered sum over individuals and

thus estimation can be parallelized. We illustrate the extent of computation time
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savings due to parallelization of MM and MSLE in the Monte Carlo study (section

2.5).

Whereas per iteration time of MM is lower than that of EM, MM generally

takes more iterations than EM due to a smaller step size. Computational efficiency

of MM then hinges upon the trade-off between extra iterations and per-iteration

time savings. In fact, we illustrate in the Monte Carlo study that tightness of

the Hessian approximation is a key factor in determining the number of extra

iterations in MM. Nevertheless, the faster-MM that we have implemented (section

2.2.4) can alleviate the concern of the poor approximation by augmenting the step

size while keeping the simplicity of MM.

Previous comparison studies of iterative optimization estimation (Cherchi and

Guevara, 2012; James, 2017) often overlooked the issue of MSLE and MM (or EM)

needing to maximize two different objective functions; even common tolerance

criteria cannot provide a fair comparison between computation efficiency of both

methods. Furthermore, computation time of standard errors in EM and MM is

often ignored while comparing with MSLE. This is also not appropriate because

standard errors can be directly computed using the estimated information matrix

in MSLE, but we argue that standard errors obtained from M-step scores in MM

and EM may not be correct and additional computation is required (see section

2.3.5 for details). In the Monte Carlo study, we try different convergence toler-

ances for MM and also report computation time of standard errors to make a fair

comparison between MM and MSLE.
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2.5 Monte Carlo Study

We conducted two separate Monte Carlo studies for LML and MON-MNL to

compare the proposed estimation algorithms (EM, MM, and faster-MM) with

the MSLE. MSLE is commonly implemented with numerical gradients –MSLE-

Numerical– especially in the context of statistical packages that allow for very

flexible utility specifications, but we also considered MSLE with an analytical ex-

pression of the gradient –MSLE-Analytical. In both simulation studies, 10 datasets

were first simulated to compare all five algorithms. While EM, MM, and faster-

MM maximize the same objective function and resulted in similar loglikelihood at

convergence, we picked the fastest among them (faster-MM) and compared it with

MSLE-Analytical in a detailed Monte Carlo study. Using 40 simulated datasets,

we compared these methods based on various performance metrics, namely: log-

likelihood at the convergence, parallel and sequential estimation time, average

percentage bias (APB), finite sample standard error (FSSE), and percentage differ-

ence between finite and asymptotic standard errors14 (StdFssePerDiff). The sensi-

tivity of performance metrics was evaluated relative to the number of simulation

draws {300, 500, 1000}, the convergence tolerance of faster-MM15 {10−3, 10−4, 10−6},

the sample size {500, 2000} (with 5 choice situations), and the number of alterna-

14Since standard errors estimation in LML requires bootstrapping, FSSE and StdFssePerDiff
were not estimated due to computational constraints.

15We kept the standard tolerance criterion for MSLE: lower bound of 10−6 on the change in the
value of the objective function during a step.
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tives {4, 50, 100}16. In terms of variation in the specification of unobserved pref-

erence heterogeneity, 2nd and 4th order polynomials – y(βir) in equation (2.4) –

were considered in LML. Since a one-class MON-MNL is the same as a parametric

mixed MNL (MMNL) model, one- and two-class specifications were considered.

We coded all the estimation methods in MATLAB. Code is available upon request.

Definitions of performance metrics for a scalar parameter are given below. For

succinctness, we reported averages across all parameters.

APB: The parameters across all simulated datasets are averaged and the subse-

quent, mean parameter estimate is used to compute APB:

APB =

∣∣∣∣∣Mean Parameter Estimate - True Parameter Value
True Parameter Value

∣∣∣∣∣ × 100.

FSSE: The standard deviation of the parameter estimates across the simulated

data sets.

StdFssePerDiff: The asymptotic standard errors across all simulated datasets are

averaged, and then the mean asymptotic standard error and FSSE are used to

compute this metric:

StdFssePerDiff =

∣∣∣∣∣∣Mean Asymptotic Standard Error - FSSE
Mean Asymptotic Standard Error

∣∣∣∣∣∣ × 100.

16For LML, we kept 4 alternatives in all simulations. A variation in cardinality of the choice set
was only considered for MON-MNL to evaluate the extant of an eventual poor approximation in
MM and also an improvement due to faster-MM.
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2.5.1 LML Monte Carlo Study

Simulation Setup

We considered a data generating process (DGP), where the indirect utility of a

decision-maker i for alternative j in choice situation t is: Uit j = x1it jα1 + x2it jα2 +

z1it jβ1i + z2it jβ2i + εit j. The attributes x1it j, x2it j, z1it j, and z2it j were drawn from a

standard normal distribution and εit j was drawn from a standard Type-I Extreme

Value distribution. α1 and α2 are fixed coefficients. β1i and β2i are random param-

eters with bimodal-normal distribution.

In LML, the number of dimensions of the support set S (Equation 2.4) is equal

to the number of random parameters (RP = 2). Boundaries of the support set S

were defined considering 3 standard deviation away from the true mean of the

random parameters. Subsequently, each dimension was divided into 103 equally-

spaced points, leading to a multidimensional grid that contains 10(3×RP) points.

We take random draws for each person from the grid to compute the simulate

loglikelihood.17 LML estimates histograms of random parameters, but we report

mean and standard deviation of the histograms as parameters of interest.

17See Train (2016) for a detailed discussion about setting boundaries of the support set and
sampling from the grid.
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Results and Discussion

The average (across the 10 repetitions) loglikelihood, estimation time, and number

of iterations are presented in Table 2.1. The loglikelihood values of all methods are

virtually indistinguishable.

Poor computational performance of MM is evident. This might have happened

because in the MM algorithm, the curvature loses its sharpness due to a poor

Hessian approximation, meaning that MM might have stuck in a specific region

of the loglikelihood due to a small step size and poor search direction.

The proposed faster-MM algorithm addressed the poor Hessian approxima-

tion of MM and considerably improved computational efficiency. The faster-MM

algorithm reduced MM estimation time by a factor of 1
103 , and even outperformed

EM and MSLE-Numerical. Note that time-per-iteration of MM and faster-MM are

very close, which are 0.270 seconds and 0.278 seconds. This small difference is ex-

pected because the faster-MM algorithm only needs some additional elementary

math operations relative to MM to compute the scalar vector ηm
φ to augment the

step size (section 2.2.4).

As clearly shown in Table 2.1, MSLE-Analytical is computationally superior for

LML estimation. Even though MSLE-Analytical and MSLE-Numerical need vir-

tually the same number of iterations, the latter requires more loglikelihood evalu-

ations. Nonetheless, in this simulation MSLE-Numerical appears to be the second

best method, after MSLE-Analytical, to estimate the LML model.
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Table 2.1: Preliminary Monte Carlo Simulation Results (LML Model)

Loglikelihood Estimation Time (min) Iterations
EM -1987.4678 1.06 79
MM -1987.4289 66.18 14698
Faster MM -1987.4255 0.64 138
MSLE-Numerical -1987.7870 0.53 44
MSLE-Analytical -1987.7866 0.13 45

Tolerance 1.00E-03
# of Observations 500
# of Draws 500
Polynomial Order 2

Tables 2.2 to 2.4 summarize results of a detailed Monte Carlo study which

compares faster-MM and MSLE-Analytical based on various performance met-

rics. Scenarios 1, 2, and 3 correspond to simulation draws of 300, 500, and 1000,

and additional indices (a), (b), and (c) characterize the faster-MM tolerance criteria

of 10−3, 10−4, and 10−6. This nomenclature remains the same for the MON-MNL

Monte Carlo study (Tables 2.7-2.10 in section 2.5.2).

The stricter tolerance criterion in faster-MM may not result into any signifi-

cant improvement in model fit (i.e., loglikelihood) and APB, but increases esti-

mation time significantly. For instance, whereas scenarios 1(a) and 1(c) in Table

2.3 (N=500, polynomial order = 4) attain similar loglikelihood and APB, parallel

estimation time (‘PET’) of scenario 1(c) is approximately 11.5 times that of 1(a).

In contrast to intuition, irrespective of the estimation method, increase in sim-

ulation draws in LML does not necessarily improve model fit but generally in-
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creases estimation time with no visible effect on APB. For instance, comparing

scenarios 2 and 3 in Table 2.2 illustrates that MSLE-Analytical with 1000 draws

converged to a lower loglikelihood than with 500 draws, with twice the estima-

tion time.

Even though parallelization of faster-MM on 8 MATLAB workers could reduce

computation time by around 65% to 75%, MSLE-Analytical remains superior be-

cause parallel estimation also reduced computation time of MSLE by around 55%

to 65% (see columns ‘SET’, ‘PET’, and ‘SET/PET’ in Tables 2.2-2.4).

The step size multiplier (‘shrinkage’) ηm
φ in faster-MM appears to increase

monotonically with the number of draws across all cases. This is because the

lower-bound Hessian approximation of MM gets poorer (i.e., flatter curvature)

with the increase in simulation draws and thus, faster-MM has more scope to im-

prove the step-size and convergence (see section 2.2.4). Lower values of shrinkage

in Table 2.3 (polynomial order 4) relative to Table 2.2 (polynomial order 2) indicate

possibilities of poorer performance of faster-MM with the increase in flexibility.

However, sample size may not have any effect on the ability of faster-MM to im-

prove the MM approximation (compare ‘shrinkage’ column in Tables 2.2 and 2.4).

56



www.manaraa.com

Table 2.2: Monte Carlo Simulation Results (LML Model, N=500, Polynomial Order=2)

Draws Tolerance Algorithm Scenarios Loglikelihood PET a SET b SET/PET APB c Shrinkage
300 - MSLE (A) d 1 -2015.791 0.19 0.43 2.3 27.3 -
500 - MSLE (A) 2 -1987.787 0.27 0.75 2.8 30.1 -
1000 - MSLE (A) 3 -2001.552 0.52 1.38 2.6 27.8 -

300 1.00E-03 Faster MM 1(a) -2015.629 0.66 2.11 3.2 28.1 30.4
500 1.00E-03 Faster MM 2(a) -1987.645 1.01 3.58 3.6 30.8 50.2
1000 1.00E-03 Faster MM 3(a) -2001.462 2.12 7.10 3.3 28.7 94.1

300 1.00E-04 Faster MM 1(b) -2015.609 0.95 2.99 3.1 27.5 29.9
500 1.00E-04 Faster MM 2(b) -1987.623 1.46 5.21 3.6 30.2 50.5
1000 1.00E-04 Faster MM 3(b) -2001.439 3.03 9.99 3.3 28.0 97.1

300 1.00E-06 Faster MM 1(c) -2015.607 1.49 4.57 3.1 27.3 30.6
500 1.00E-06 Faster MM 2(c) -1987.621 2.37 8.23 3.5 30.0 49.2
1000 1.00E-06 Faster MM 3(c) -2001.436 4.93 16.28 3.3 27.8 94.3

a Parallel estimation time (in minutes)
b Sequential estimation time (in minutes)
c Mean of average percentage bias of all parameters
d MSLE (analytical gradient)
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Table 2.3: Monte Carlo Simulation Results (LML Model, N=500, Polynomial Order=4)

Draws Tolerance Algorithm Scenarios Loglikelihood PET SET SET/PET APB Shrinkage
300 - MSLE (A) 1 -2003.748 0.70 1.71 2.4 27.0 -
500 - MSLE (A) 2 -1975.715 1.13 2.71 2.4 28.5 -
1000 - MSLE (A) 3 -1988.064 2.30 5.53 2.4 25.4 -

300 1.00E-03 FasterMM 1(a) -2004.419 2.58 8.04 3.1 29.8 21.7
500 1.00E-03 FasterMM 2(a) -1976.657 10.83 32.65 3.0 28.3 38.9
1000 1.00E-03 FasterMM 3(a) -1988.077 28.72 87.91 3.1 28.9 58.8

300 1.00E-04 FasterMM 1(b) -2003.732 7.89 24.50 3.1 28.1 21.5
500 1.00E-04 FasterMM 2(b) -1975.900 26.56 83.57 3.1 29.8 39.7

300 1.00E-06 FasterMM 1(c) -2003.586 29.58 90.97 3.1 27.5 21.5

Note: Refer Table 2.2 for description of column headers

Table 2.4: Monte Carlo Simulation Results (LML Model, N=2000, Polynomial Order=2)

Draws Tolerance Algorithm Scenarios Loglikelihood PET SET SET/PET APB Shrinkage
300 - MSLE (A) 1 -8069.076 1.77 4.75 2.7 29.2 -
500 - MSLE (A) 2 -8028.186 3.17 8.54 2.7 30.2 -
1000 - MSLE (A) 3 -8018.608 6.79 18.67 2.8 29.2 -

300 1.00E-03 FasterMM 1(a) -8069.209 7.15 25.99 3.6 29.4 30.1
500 1.00E-03 FasterMM 2(a) -8028.369 14.54 52.55 3.6 30.5 49.1
1000 1.00E-03 FasterMM 3(a) -8018.703 34.49 130.59 3.8 29.8 94.3

300 1.00E-04 FasterMM 1(b) -8068.990 9.55 34.40 3.6 29.2 30.0
500 1.00E-04 FasterMM 2(b) -8027.806 19.42 71.80 3.7 30.5 48.9

300 1.00E-06 FasterMM 1(c) -8068.487 14.52 52.31 3.6 29.0 30.7

Note: Refer Table 2.2 for description of column headers
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2.5.2 MON-MNL Monte Carlo Study

Simulation Setup

We considered a data generating process (DGP) with 2 classes (with proportion

s2 = .7), where utility of individual i of class c from choosing alternative j at time

t is:

Uc
it j = x1it jαc1 + x2it jαc2 + z1it jβ

c1
i + z2it jβ

c2
i + εit j (2.46)

where αc1 and αc2 are fixed parameters, and βc1
i and βc2

i are random parameters of

class c with the following distribution:

βc1
i

βc2
i

 ∼ N γc1

γc2

 ∆11
c ∆12

c

∆21
c ∆22

c

 . (2.47)

All other specifications remain the same as of LML DGP (see section 2.5.1). For

one-class MON-MNL (i.e., a mixed logit MMNL), datasets were also generated

using equations 2.46 and 2.47, but a single class DGP was considered.

Results and Discussion

Tables 2.5 and 2.6 summarize the average (across 10 DGPs) loglikelihood, estima-

tion time (in minutes), and the number of iterations for MMNL (one class) and
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MON-MNL (two classes). Across both choice set cardinalities and model specifi-

cations, all three EM-based algorithms converged to the same loglikelihood value

(up to 3 decimal places), which is marginally different than that of MSLE. This

minor discrepancy might be a result of the different treatment of simulation error

while maximizing a different objective function (in EM and quasi-Newton).

Resemblance between per iteration time of MM and faster-MM, as also pointed

out in the LML Monte Carlo study, holds for MMNL and MON-MNL models.

For a small choice set with J = 4, under the MMNL specification, MM and faster-

MM took similar estimation time and also outperformed all other methods by a

significant margin. While the latter observation is consistent with James (2017),

the former resemblance can be attributed to a tighter approximation of Hessian in

MM for a small choice set (i.e., shrinkage value ηm
αc

of just 1.15, see note in Table

2.5).

Under the MON-MNL specification, with a small choice set J = 4, MM and

faster-MM could still computationally surpass EM and MSLE-Numerical, but

MSLE-Analytical outperformed all methods. In fact, under both MMNL and

MON-MNL specifications, the performance of MM estimation gets worse for a

choice set with higher cardinality J = 50. We argue that the computational supe-

riority of MM, as noted by James (2017), seems to be true for a narrow set of logit

specifications and settings.

Due to a Hessian approximation that deteriorates, the value of the scalar mul-

tiplier ηm
αc

in faster-MM increases with the number of alternatives. The shrinkage
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ηm
αc

effectively attained average values of 4.78 and 4.73 for J = 50 in MMNL and

MON-MNL (see note in Tables 2.5 and 2.6), which led to significant computation

time savings of the faster-MM against MM – the ratio of estimation time of MM

against faster-MM is 1.95 and 4.24, respectively. Whereas the faster-MM algorithm

was indeed able to significantly reduce MM estimation time for larger choice sets,

MSLE-Analytical marginally outperformed it under both specifications.

Table 2.5: Preliminary Monte Carlo Simulation Results (MMNL Model)

Alternatives EM MM Faster MM MSLE-Numerical MSLE-Analytical
Loglikelihood

4 -8890.3675 -8890.3678 -8890.3678 -8889.7890 -8889.7891
50 -18902.6051 -18902.6059 -18902.6055 -18897.9788 -18897.9793

Iterations
4 28 33 36 20 21

50 87 215 104 19 22

Estimation time (min)
4 1.35 0.38 0.33 1.65 0.99

50 246.50 130.96 66.91 132.48 32.59

Tolerance 1.00E-04
# of Observations 2000

# of Draws 500

Note: Average shrinkage values of faster-MM for J = 4 and J = 50 are 1.15 and 4.78, respectively.

Tables 2.7 to 2.10 summarize the average (across 40 simulated datasets) of

performance metrics for a detailed comparison of MON-MNL estimation using

MSLE-Analytical and faster-MM.18 As expected, increase in cardinality of the

choice set increased the bias in estimates (compare ‘APB’ in Tables 2.7 and 2.8), but

there is no noticeable difference between APB of faster-MM and MSLE-Analytical.

18The results of the detailed Monte Carlo study for MMNL did not provide additional insights
and therefore, those results are not presented for brevity.
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Table 2.6: Preliminary Monte Carlo Simulation Results (MON-MNL Model)

Alternatives EM MM Faster MM MSLE-Numerical MSLE-Analytical
Loglikelihood

4 -7958.2938 -7958.2933 -7958.2933 -7957.0813 -7957.0888
50 -15174.4599 -15174.4593 -15174.4594 -15172.9390 -15172.9348

Iterations
4 92 167 141 44 45

50 61 921 208 61 59

Estimation time (min)
4 16.3 8.8 7.5 9.7 4.6

50 171.3 362.8 85.4 119.6 53.6

Tolerance 1.00E-04
# of Observations 2000

# of Draws 500
# of Classes 2

Note: Average shrinkage values of faster-MM for J = 4 and J = 50 are 1.12 and 4.73, respectively.

In fact, FSSE and StdFssePerDiff of both estimation methods remain virtually

same across all four combinations of sample size and choice set cardinality. The

sensitivity of performance metrics relative to simulation draws and tolerance cri-

terion (in faster-MM) remains consistent with the results of the LML simulation

(see section 2.5.1). Whereas parallel computation could reduce estimation time of

both methods by around 67% to 78% (see ‘SET/PET’ column in Tables 2.7-2.10),

MSLE-Analytical still outperformed faster-MM. However, whereas the ratio of

estimation time of both methods remained intact, the scale of difference in estima-

tion time decreased significantly under parallelization. For instance, for a sample

size of 500 and choice set with 100 alternatives, comparing scenarios 2 and 2(b) in

Table 2.10) shows that the difference in estimation time of MSLE-Analytical and

faster-MM reduced from 57.94 minutes in sequential (‘SET’) to 12.09 minutes in
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parallel (‘PET’) computation.

As detailed in section 2.3.5, whereas MSLE-Analytical could retrieve standard

errors as a by-product of estimation, we had to compute standard errors of faster-

MM by passing point estimates through MSLE-Numerical.19 Tables 2.7 to 2.10

show that the standard error computation (‘SST’) may often take as much time as

point estimation (‘SET’). However, since MSLE-Numerical could take advantage

of the benefits of parallel computation, parallelization could reduce this overhead

time by around 60% to 80%.

19We could have computed analytical scores, and thus Hessian and standard errors, passing
faster-MM estimates to the score function of MSLE-Analytical. This may not add extra computa-
tion time to faster-MM, but computation time comparison would not be fair (see section 2.3.5).
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Table 2.7: Monte Carlo Simulation Results (MON-MNL Model, N=2000, J=4)
Draws Tolerance Algorithm Scenarios Loglikelihood PET a PST b SET c SST d SET/PET APB e FSSE f StdFssePerDiff g

300 - MSLE (A) 1 -7952.133 0.66 - 2.70 - 4.1 14.4 0.0515 17.0
500 - MSLE (A) 2 -7949.889 1.08 - 4.11 - 3.8 14.0 0.0486 19.5
1000 - MSLE (A) 3 -7948.890 2.16 - 7.23 - 3.3 14.8 0.0499 17.7

300 1.00E-03 Faster MM 1(a) -7952.737 1.06 1.24 3.44 3.46 3.3 17.3 0.0525 18.9
500 1.00E-03 Faster MM 2(a) -7950.299 1.95 2.01 6.75 5.59 3.5 17.8 0.0474 21.2

300 1.00E-04 Faster MM 1(b) -7952.730 1.10 1.23 3.45 3.48 3.1 17.2 0.0528 18.7
500 1.00E-04 Faster MM 2(b) -7950.293 2.05 1.98 6.97 5.62 3.4 15.2 0.0475 21.1
1000 1.00E-04 Faster MM 3(b) -7949.108 5.58 3.72 18.68 10.70 3.4 14.5 0.0495 18.3

500 1.00E-06 Faster MM 2(c) -7950.293 2.11 2.06 7.46 5.66 3.5 15.2 0.0475 21.0

a Parallel estimation time (in minutes)
b Parallel standard error computation time (in minutes)
c Sequential estimation time (in minutes)
d Sequential standard error computation time (in minutes)
e Mean of average percentage bias of all parameters
f Mean of finite sample standard error of all parameters
g Mean of percentage difference in finite sample and asymptotic standard error of all parameters
h MSLE (analytical gradient)

Table 2.8: Monte Carlo Simulation Results (MON-MNL Model, N=2000, J=50)
Draws Tolerance Algorithm Scenarios Loglikelihood PET PST SET SST SET/PET APB FSSE StdFssePerDiff

300 - MSLE (A) 1 -15184.466 9.80 - 35.55 - 3.6 63.2 0.0457 11.4
500 - MSLE (A) 2 -15176.935 16.24 - 56.40 - 3.5 65.7 0.0455 12.2
1000 - MSLE (A) 3 -15167.718 34.40 - 134.01 - 3.9 63.1 0.0451 9.1

300 1.00E-03 Faster MM 1(a) -15188.429 11.31 7.18 41.43 34.84 3.7 61.4 0.0509 15.7
500 1.00E-03 Faster MM 2(a) -15178.465 19.15 12.95 81.00 58.11 4.2 61.8 0.0475 12.2

300 1.00E-04 Faster MM 1(b) -15188.426 11.66 7.52 42.26 34.16 3.6 61.3 0.0508 15.5
500 1.00E-04 Faster MM 2(b) -15178.459 19.92 12.93 84.29 58.16 4.2 61.7 0.0473 12.0
1000 1.00E-04 Faster MM 3(b) -15168.587 67.63 33.12 293.57 157.80 4.3 65.3 0.0477 13.1

500 1.00E-06 Faster MM 2(c) -15178.459 20.17 12.61 84.85 57.98 4.2 61.6 0.0472 12.0

Note: Refer Table 2.7 for description of column headers
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Table 2.9: Monte Carlo Simulation Results (MON-MNL Model, N=500, J=50)
Draws Tolerance Algorithm Scenarios Loglikelihood PET PST SET SST SET/PET APB FSSE StdFssePerDiff

300 - MSLE (A) 1 -3757.109 3.52 - 12.57 - 3.6 60.7 0.0987 24.1
500 - MSLE (A) 2 -3756.219 5.05 - 19.16 - 3.8 61.6 0.0990 22.4
1000 - MSLE (A) 3 -3753.961 11.62 - 44.86 - 3.9 60.8 0.0951 19.2

300 1.00E-03 Faster MM 1(a) -3758.696 4.15 3.30 18.59 15.41 4.5 61.7 0.0981 20.8
500 1.00E-03 Faster MM 2(a) -3757.204 8.53 5.38 39.04 22.92 4.6 61.8 0.1020 24.8

300 1.00E-04 Faster MM 1(b) -3758.688 4.32 3.67 19.06 16.41 4.4 64.3 0.0978 20.9
500 1.00E-04 Faster MM 2(b) -3757.195 9.20 5.49 42.24 24.99 4.6 61.5 0.1018 24.9
1000 1.00E-04 Faster MM 3(b) -3754.389 21.64 10.83 100.76 49.28 4.7 61.1 0.0951 20.7

500 1.00E-06 Faster MM 2(c) -3757.194 9.90 5.43 44.49 22.40 4.5 61.4 0.1017 24.9

Note: Refer Table 2.7 for description of column headers

Table 2.10: Monte Carlo Simulation Results (MON-MNL Model, N=500, J=100)
Draws Tolerance Algorithm Scenarios Loglikelihood PET PST SET SST SET/PET APB FSSE StdFssePerDiff

300 - MSLE (A) 1 -4153.599 3.45 - 15.46 - 4.5 76.5 0.1015 24.8
500 - MSLE (A) 2 -4148.869 5.62 - 24.33 - 4.3 75.7 0.0986 25.1
1000 - MSLE (A) 3 -4148.613 12.20 - 52.20 - 4.3 76.1 0.0986 24.9

300 1.00E-03 Faster MM 1(a) -4156.026 5.39 3.72 22.16 17.63 4.1 74.6 0.0975 23.7
500 1.00E-03 Faster MM 2(a) -4150.455 14.09 6.32 64.08 29.84 4.5 75.5 0.0999 23.0

300 1.00E-04 Faster MM 1(b) -4156.020 5.84 4.15 23.77 17.62 4.1 74.3 0.0972 23.8
500 1.00E-04 Faster MM 2(b) -4150.446 17.71 6.24 82.27 29.72 4.6 75.3 0.0998 22.9
1000 1.00E-04 Faster MM 3(b) -4149.348 23.55 11.75 106.84 54.50 4.5 75.6 0.0981 22.0

500 1.00E-06 Faster MM 2(c) -4150.445 25.78 6.52 119.50 29.97 4.6 75.2 0.0998 22.9

Note: Refer Table 2.7 for description of column headers
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Table 2.11: Standard Errors Comparison
Data Generating Process 1 Data Generating Process 2

faster-MM MSLE-Analytical faster-MM MSLE-Analytical

Class 1 M-step Scores Bootstrap
MM-MSLE
(Corrected)

Information
Matrix

M-step Scores Bootstrap
MM-MSLE
(Corrected)

Information
Matrix

α11 0.06 0.07 0.06 0.06 0.14 0.12 0.13 0.12
α12 0.09 0.09 0.08 0.08 0.18 0.21 0.19 0.18
γ11 0.14 0.13 0.13 0.13 0.24 0.27 0.28 0.23
γ12 0.17 0.20 0.16 0.17 0.31 0.34 0.32 0.31
∆11

1 0.38 0.37 0.35 0.36 0.41 0.34 0.35 0.34
∆12

1 0.60 0.27 0.24 0.26 0.71 0.37 0.39 0.33
∆22

1 0.60 0.61 0.53 0.56 0.81 0.67 0.71 0.69

Class 2
α21 0.07 0.09 0.07 0.07 0.08 0.08 0.09 0.08
α22 0.09 0.13 0.10 0.10 0.13 0.12 0.12 0.12
γ21 0.12 0.17 0.13 0.13 0.15 0.15 0.16 0.16
γ22 0.16 0.17 0.17 0.17 0.21 0.19 0.19 0.21
∆11

2 0.27 0.32 0.25 0.26 0.41 0.42 0.44 0.40
∆12

2 0.38 0.19 0.18 0.18 0.51 0.29 0.30 0.27
∆22

2 0.34 0.35 0.32 0.32 0.49 0.46 0.42 0.48

Loglikelihood -2088.8 -2089.3 -1549.7 -1549.3

N 500

J 4

Note: The discrepant standard errors are in bold-font.
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Table 2.11 illustrates the discrepancies in the faster-MM standard errors, which

are computed using M-step scores under the two DGPs (differing in true parame-

ter values). A considerable deviation was mainly exhibited in off-diagonal terms

of the variance-covariance matrices ∆12
1 and ∆12

2 . However, the corrected MM-

MSLE method could closely mimic the standard errors derived from both boot-

strapping and MSLE-Analytical.

2.6 Empirical Study: Adoption of Electric Motorcycles

The empirical study relies on microdata collected from a stated preference sur-

vey of consumers’ willingness to adopt electric motorcycles in Solo, Indonesia in

August and September, 2015. Lower cost, lower performance e-bikes and elec-

tric scooters exist in Solo but have very low market penetration. The purpose of

the survey was to determine whether, at what price point, and at what quality,

consumers would replace gas-powered motorcycles, which contribute to elevated

levels of local pollution, for electric motorcycles. Guerra (2017) provides details

on the survey design, survey collection, and data processing.

In this study we rely on the data from the 1208 respondents (out of 1307), who

completed all choice scenarios (5 in total). In each choice scenario, respondents

selected among a conventional motorcycle, an electric motorcycle, and no motor-

cycle based on price, speed, range, and charge time. The relevant attributes and

their levels are presented in Table 2.12. Purchase price is a monthly credit pay-
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ment of 500,000 rupiah (roughly US$40) for three years. In Solo as in much of

Indonesia, consumers buy motorcycles on credit and these are the most common

repayment terms.

Table 2.12: Summary of choice sets and attribute values

Attributes Gas Motorcycle Electric Motorcycle
Monthly payment (3 years in thousands) 500 400, 500, 600
Fuel price (thousands of rupiah per liter) 7, 8, 9 4, 5, 6, 7, 8
Maximum range on single charge (km) NA 40, 60, 80, 100
How long to charge (hours) NA 2, 3, 4, 5
Max speed (km/h) 100 60, 70, 80, 90, 100

Table 2.13 presents the summary statistics for the 1208 respondents. Compar-

ing the sample to Solo’s resident population, the sample is younger, more male,

and includes slightly fewer of the lowest income households. It is also a group

that is more likely to be making future motorcycle purchases.

Since the focus of this study is to compare various estimation methods, we

have specified a model in which the utility equation has alternative-specific at-

tributes. This empirical specification can be further refined by exploring hetero-

geneity across different demographic groups (Jones et al., 2013; Guerra, 2017).

We estimated MMNL (one class), MON-MNL (two classes), and LML mod-

els using faster-MM and MSLE-Analytical in preference space20. LML estima-

tion accuracy was validated by comparing estimates of MMNL with a second-

20Although the scale of the parameter estimates varies by model, dividing motorcycle feature
estimates by negative of fuel price coefficient produces consistent WTP estimates.
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Table 2.13: Descriptive sample statistics (N=1208)

Statistic Mean St. Dev. Min Max
Woman 0.39 0.49 0 1
Age 32 12.6 16 80
Household motorcycles 2.11 1.07 0 8
Has own motorcycle 0.95 0.21 0 1
Motorcycle: principal mode 0.81 0.39 0 1

Monthly income (100,000’s of Rupiah)
<500 0.07 0.25 0 1
500-1,000 0.31 0.46 0 1
1,000-2,500 0.41 0.49 0 1
2,500-5,000 0.17 0.38 0 1
<5,000 0.04 0.19 0 1

order LML-Polynomial specification –i.e., y(βir) to be a second-order polynomial–

since both specifications are analytically equivalent. To highlight the flexibility

of LML and its importance in modeling multimodality, an eighth-order LML-

polynomial model was also estimated. The boundaries of the parameter space

were set to three standard deviations away from the estimated mean of MMNL.

In MMNL and MON-MNL, correlations across parameters and standard devia-

tion of monthly payment and fuel price are assumed to be zero since they were

not statistically significant when included. We also analyzed the sensitivity of

performance metrics – computation time, parameter estimates, and model fit –

relative to simulation draws and faster-MM tolerance criteria.

Tables 2.14, 2.15, and 2.16 summarize estimation results. From a behavioral

perspective, some new insights are unveiled. Across all three models, respondents
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are more likely to choose a motorcycle with higher speed, longer range, faster

charging times, lower fuel cost, and lower monthly payment. This is both intuitive

and consistent with the literature on alternative fuel vehicles (Cherry and Cervero,

2007; Daziano, 2013; Jones et al., 2013). Charge time is particularly important with

respondents indicating a WTP of a 20% fuel premium for an hour shorter charge

time. There is substantial variation in how much respondents value speed, range,

and charge times. For example, across the MMNL and LML models the standard

deviation of the parameter estimates for speed, range, and charger time are larger

than the point estimates.

The results of this empirical application are aligned with those obtained in the

Monte Carlo study, but additional remarks are uncovered. Comparing scenar-

ios 1(a) and 1(b) across all models indicates that a tolerance criterion of 10(−3) in

faster-MM is strict enough to obtain stable estimates and model fit that are com-

parable with MSLE-Analytical. Furthermore, scenario 2 (with higher simulation

draws) resulted into slightly better fit than scenario 1 –1(a) in faster-MM– across

all models, but at the expense of around three- to five-fold computational time

increase with no noticeable differences in parameter estimates. The standard er-

ror estimates of faster-MM (scenario 1(a)) and MSLE-Analytical (scenario 1) did

not exhibit any considerable difference across all three models. Parallel compu-

tation could reduce estimation time by 50% to 80% which is consistent with the

simulation findings.

As expected, estimated parameters, standard errors, and loglikelihood values
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of MMNL and LML-Polynomial of second-order are similar. The eighth-order

LML-Polynomial has a higher loglikelihood value relative to the second-order

LML-Polynomial due to a higher permitted by more parameters. However, com-

paring scenario 3 in Table 2.15 and scenario 2 in Table 2.16 shows that MON-MNL

could attain a much higher loglikelihood (-2615.88) with fewer parameters than

the eighth-order LML-Polynomial (-2687.80).
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Table 2.14: Adoption of Electric Motrocycles in Indonesia (MMNL Model Results)

Est. t-stat Est. Est. t-stat Est. Est.
ASC (Electric) 8.73 9.36 8.50 7.92 9.35 8.13 7.43
ASC (Gas) 11.23 11.22 11.04 10.04 9.19 10.24 9.89
Monthly pay (Rp. millions) -2.73 -3.06 -2.78 -2.71 -3.20 -2.71 -2.68
Fuel price (Rp. thousands) -0.68 -12.85 -0.69 -0.68 -12.60 -0.68 -0.66

Mean
Charge time (hours) -0.92 -8.21 -1.09 -1.16 -9.59 -1.17 -1.09
Max speed(km/h/100) 4.60 7.08 4.66 4.97 7.34 4.87 4.81
Max range(km/100) 1.94 4.08 2.40 2.28 4.95 2.26 2.59

Standard Deviation
Charge time (hours) 1.37 10.06 1.50 1.51 12.30 1.51 1.49
Max speed(km/h/100) 6.42 11.92 6.10 5.63 10.90 5.69 5.63
Max range(km/100) 5.64 11.34 5.17 4.80 9.10 4.79 4.58

Loglikelihood -2721.54 -2717.32 -2722.14 -2722.05 -2719.31
Parallel est. time (min) 1.15 3.41 1.13 1.28 4.19
Sequential est. time (min) 2.15 6.84 2.19 2.55 10.01
Number of Draws 300 1000 300 300 1000
Tolerance - - 1.00E-03 1.00E-04 1.00E-03
Scenario 1 2 1(a) 1(b) 2

Method MSLE-Analytical Faster MM
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Table 2.15: Adoption of Electric Motrocycles in Indonesia (LML Model Results)

Est. t-stat Est. Est. Est. t-stat Est. Est.
ASC (Electric) 12.35 8.82 10.93 9.67 12.09 8.41 12.27 10.74
ASC (Gas) 14.59 11.36 13.29 12.37 14.27 10.95 14.49 13.10
Monthly pay (Rp. millions) -3.31 -2.66 -2.98 -2.92 -3.29 -2.56 -3.31 -2.99
Fuel price (Rp. thousands) -0.71 -11.72 -0.69 -0.74 -0.71 -11.95 -0.71 -0.70

Mean
Charge time (hours) -1.15 -7.68 -1.10 -0.97 -1.17 -7.38 -1.16 -1.12
Max speed(km/h/100) 3.91 6.96 3.61 4.83 4.05 7.16 3.94 3.85
Max range(km/100) 1.75 4.28 1.87 1.76 1.71 4.13 1.74 1.88

Standard Deviation
Charge time (hours) 1.44 9.34 1.40 1.32 1.47 8.53 1.45 1.43
Max speed(km/h/100) 7.13 9.72 6.24 8.18 6.98 9.24 7.07 6.20
Max range(km/100) 5.36 10.04 5.13 5.48 5.50 10.21 5.40 5.27

Loglikelihood -2729.02 -2724.02 -2687.80 -2729.25 -2729.04 -2724.22
Parallel est. time (min) 1.7 7.6 34.9 5.9 8.3 26.4
Sequential est. time (min) 3.5 15.2 76.6 16.2 22.5 76.6
Number of Draws 300 1000 1000 300 300 1000
Order 2 2 8 2 2 2
Tolerance - - - 1.00E-03 1.00E-04 1.00E-03
Scenario 1 2 3 1(a) 1(b) 2

Method MSLE-Analytical Faster MM
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Table 2.16: Adoption of Electric Motrocycles in Indonesia (MON-MNL Model Results)
Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

Est. t-stat Est. t-stat Est. Est. Est. t-stat Est. t-stat Est. Est. Est. Est.
ASC (Electric) 14.60 13.88 13.30 10.31 18.48 15.33 14.67 14.22 12.98 9.70 16.97 16.22 16.97 16.22
ASC (Gas) 62.19 4.30 15.06 11.49 67.57 17.18 65.91 4.65 14.91 10.80 68.44 17.36 68.44 17.36
Monthly pay (Rp. millions) 79.91 3.94 -5.76 -5.26 74.55 -5.82 72.30 4.14 -5.61 -5.10 81.58 -5.55 81.58 -5.55
Fuel price (Rp. thousands) -23.58 -4.30 -0.12 -1.67 -24.89 -0.16 -25.18 -4.19 -0.12 -1.74 -26.78 -0.15 -26.78 -0.15

Mean
Charge time (hours) -10.58 -4.10 -0.89 -5.44 -9.94 -0.93 -11.16 -4.43 -0.82 -5.70 -10.34 -1.02 -10.34 -1.02
Max speed(km/h/100) 145.08 4.27 2.48 2.49 138.74 2.69 152.38 4.69 2.59 2.68 134.95 2.93 134.95 2.93
Max range(km/100) 85.36 4.30 0.21 0.17 85.96 0.22 81.23 4.53 0.20 0.18 90.04 0.22 90.04 0.22

Standard Deviation
Charge time (hours) 23.60 4.44 0.92 5.42 23.55 0.97 23.29 4.58 0.95 5.59 25.59 0.94 25.59 0.94
Max speed(km/h/100) 46.57 4.33 9.63 7.69 43.71 9.06 44.98 4.73 10.13 6.92 44.30 8.58 44.30 8.58
Max range(km/100) 56.09 4.46 4.18 6.34 57.53 4.79 53.71 4.41 4.27 5.94 59.58 4.95 59.58 4.95
Share 0.29 -6.50 0.27

Loglikelihood -2619.79 -2615.88 -2621.79 -2620.19 -2616.68
Parallel est. time (min) 4.30 15.61 4.68 5.85 16.95
Sequential est. time (min) 19.66 69.80 21.99 26.66 76.65
Number of Draws 500 1000 500 500 1000
Tolerance - - 1.00E-03 1.00E-04 1.00E-03
Scenario 1 2 1(a) 1(b) 2

Method MSLE-Analytical Faster MM

Table 2.17: Computational Efficiency Ranking

Estimation Methods
MMNL MON-MNL LML

small choice set large choice set small choice set large choice set small choice set
MSLE-Analytical 3 1 1 1 1
MSLE-Numerical 5 4 4 3 3
Faster-MM 1 2 2 2 2
MM 2 3 3 5 5
EM 4 5 5 4 4

Note 1: Parallelization can reduce estimation time of faster-MM and MSLE up to 80% due to storage of information in statistics that are sufficient.

Note 2: Computation efficiency of EM does not improve in parallelization due to communication of large matrices.

Note 3: Faster-MM is as good as MSLE in terms of average percentage bias and finite-sample standard error across all models.
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Figure 2.1 shows that the eighth-order LML-polynomial could capture mul-

timodality in the mixing distribution of WTP, which could not be retrieved by

the second-order LML-polynomial. Similarly, MON-MNL could also identify two

groups with different WTP distributions. Whereas WTP of one of classes MON-

MNL has a similar range to LML, the other class has much higher standard de-

viation and thus a much larger range of WTP measures. For instance, the range

of WTP for charge time (per hour) is -7000 to 4000 Rp. in the eighth-order LML-

polynomial; the two classes of MON-MNL have ranges of -5,000 to 4,000 Rp. (rel-

atively matching LML) and -20,000 to 10,000 Rp. (much wider than LML), respec-

tively. Whereas the former has mean and median WTP of approximately -1,300

and -1,900 Rp., these estimates for the latter are -2,700 and -900 Rp.

In sum, the performance of the different estimation methods remain intact in

the empirical study, but we highlight the sensitivity of the WTP estimates relative

to the semiparametric specifications. While the semiparametric modeling litera-

ture is growing, better model selection metrics are required to leverage benefits of

theses flexible specifications.
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Figure 2.1: Histogram of Willingness to Pay (Rp. thousands)
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2.7 Conclusions

The promising computational performance of the minorization-maximization

(MM) algorithm in the estimation of parametric mixed multinomial logit (MMNL)

models as analyzed by James (2017) encouraged us to derive MM for two semi-

paramtric logit models, namely the logit-mixed logit (LML) and the mixture-of-

normals multinomial logit (MON-MNL). Whereas the standard EM algorithm (of

both LML and MON-MNL) optimizes the loglikelihood of weighted MNL models

at each iteration, the simplicity of MM lies in approximating these optimization

problems with closed-form parameter updates. In fact, in contrast to EM, we illus-

trate that MM can leverage advantages of parallel computation. Computational

efficiency ranking of the different estimation methods across the different models

under analysis is presented and summarized in Table 2.17.

While implementing the algorithm we observed that good behavior of the MM

approximation, and thus computational efficiency of the MM algorithm, break

down if any of the weighted MNL models has a large choice set. In the LML

model, the choice set of the weighted MNL that represents the discrete hetero-

geneity distribution is intrinsically large (e.g., at least in the order of J = 500) as

the simulation draws need to adequately cover the parameter space. For situa-

tions with a large choice set we have derived a general faster-MM algorithm that

simply adjusts the optimization step size using a scalar multiplier.

In separate Monte Carlo studies, we have compared MSLE (with analytical
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and numerical expressions of the gradient) against the iterative-optimization esti-

mation algorithms – namely EM, MM, and the proposed faster-MM – to estimate

LML and MON-MNL.

For LML, MM lags well behind all algorithms, at the edge of becoming imprac-

tical. Whereas the proposed faster-MM reduced MM estimation time by a factor

of around 100 and surpassed EM. However, MSLE with an analytical gradient still

outperformed faster-MM by a significant margin. In sum, alternative algorithms

derived in this study lose their practical appeal for LML estimation.

For the MON-MNL simulated data with small choice sets, we found that MSLE

with an analytical gradient was again the fastest estimator, but MM was not far

behind. When the number of alternatives increases, MM rapidly deteriorates and

even was ourperformed by EM. Thus the main result of James (2017), where MM

outperformed MSLE and EM in computational efficiency, appears to be only true

for a parametric MMNL model (or one class MON-MNL) with a rather small

choice set. The proposed faster-MM was able to reduce MM estimation time by

more than 75% and could surpass EM for MON-MNL with a choice set of 50 al-

ternatives (for J = 50, 85.4 minutes for faster-MM vs. 53.6 minutes for MSLE-

Analytical; cf. 362.5 minutes for MM and 171.3 minutes for EM).

The proposed parallel implementation of faster-MM and MSLE could further

reduce estimation time of both by 45% to 80%. Although MSLE with analytical

gradient still outperformed faster-MM, parallel computation reduced the scale of

the difference between estimation times. Both methods performed equally well
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in terms of recovering parameters and estimating asymptotic standard errors. In

sum, the (parallel) faster-MM algorithm that we propose and implemented is a

competitive alternative to MSLE with analytical gradient for MON-MNL model

and is in general better than the most widely used estimator: MSLE with numeri-

cal gradients21.

Finally we argue and illustrate that use of M-step scores in EM and MM can re-

sult into wrong estimates of standard errors. The comparable computational per-

formance of faster-MM opens up possibilities of using hybrid faster-MM-MSLE

algorithms, which can also streamline the standard errors computation. The hy-

brid faster-MM-MSLE algorithms are likely to outperform EM-MSLE algorithms

in terms of simplicity and computation speed, while maintaining numerical sta-

bility.

As a general result, the faster-MM algorithm would be advantageous for mod-

els that involve really complex loglikelihood gradients. Furthermore, both the

simplicity of coding (only arithmetic operations) and speed of faster-MM make

this algorithm an attractive alternative for estimation software that is flexible in

terms of structural specifications. Flexible code allows the user to directly write

the loglikelihood or the utility functions. Examples of this type of software in-

cludes Biogeme (Bierlaire, 2016) and the R package created by the Choice Mod-

elling Centre at Leeds (CMC, 2017), which allow for estimation of any model at

21In fact, the comparison of faster-MM against MSLE with numerical gradients, instead of an-
alytical, gradient is more apposite since both methods require similar mathematical rigor and in-
puts.
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the cost of working with numerical gradients. MSLE with analytical gradients

may be the fastest option (as it was in the models analyzed in this chapter) but its

implementation is not only model- but also specification-specific (current imple-

mentations, for example, are reserved to linear-in-parameter utility functions).

We envision as further work testing the performance of the faster-MM algo-

rithm for such complex specifications, for example integrated choice and latent

variable (ICLV) models, which are usually very slow to estimate in flexible code

that uses numerical gradients. A significant difference in the willingness to pay

estimates of the flexible LML and MON-MNL also raises an important questions

about model selection from a growing family of semiparametric choice models.
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CHAPTER 3

DESIGNED QUADRATURE TO APPROXIMATE INTEGRALS IN

MAXIMUM SIMULATED LIKELIHOOD ESTIMATION

3.1 Introduction

Discrete choice models are widely applied across several disciplines such as mar-

keting, economics, and travel behavior. The mixed multinomial logit (MMNL)

model currently dominates empirical choice modeling research since it can cap-

ture unobserved preference heterogeneity in willingness to pay (WTP) of decision-

makers. However, the multinomial probit (MNP) model is also an attractive al-

ternative to specify flexible substitution patterns across alternatives, as well as to

jointly model mixed types of dependent variables (Bhat, 2015). In the maximum

likelihood estimator of both MMNL and MNP models, choice probabilities in-

volve computation of a multidimensional integral1 (Train, 2009). In the absence

of analytic solutions2, these integrals are generally approximated through simula-

tion.

In general, the above-mentioned estimation problems include evaluation of

1In fact, estimating design criteria in Bayesian D-efficient designs of choice experiments also
requires computation of multidimensional integrals (Yu et al., 2010).

2Although Bhat (2011) introduced a simulation-free maximum approximate composite
marginal likelihood (MACML) estimation approach for MNP model, the Geweke - Hajivassiliou -
Keane (GHK) simulator (Geweke et al., 1994) still is more commonly used in practice.
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integrals of the following type:∫
Γ

f (x)ω(x)dx ≈
n∑

q=1

f (xq)wq,

where Γ is a set in the d-dimensional Euclidean space Rd, ω is a probability den-

sity function (or positive weight function), and f (.) is generally a conditional like-

lihood function. Instead of solving the actual integral, simulation-based inference

considers a discrete approximation. The objective of computationally efficient

simulation is to determine nodes xq and weights wq so that integration can be

approximated with minimum number of function evaluations (n).

Simulation-based inference in discrete choice models started with Pseudo-

Monte Carlo (PMC) methods. As an alternative to PMC, Quasi-Monte Carlo

(QMC) methods are now typically used to approximate multidimensional inte-

grals (Bhat, 2001; Train, 2009). More specifically, low-discrepancy sequences3 such

as randomized and scrambled Halton sequences (Bhat, 2003) and modified latin

hypercube sampling (MLHS) (Hess et al., 2006) dominate the empirical literature.

QMC methods are prefered over PMC because QMC requires fewer draws (i.e.,

fewer function evaluations) to approximate the integrals due to their excellent

coverage properties (Bhat, 2001). Sándor and Train (2004) and Munger et al. (2012)

showed superiority of digital nets over Halton sequences, but implementation sim-

plicity of the latter makes it a popular alternative in practice.

Empirical unstability of point estimates with a low number of evaluations

3Dick and Pillichshammer (2014) illustrates that the lower the discrepancy of a sequence, the
smaller will be the error in the Monte Carlo integration.
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when using either PMC or QMC has motivated researchers to explore easy-to-

implement numerical methods that can accurately approximate the integral of

interest with fewer function (i.e., integrand) evaluations (n) than QMC. In this

study, we argue and illustrate that recent developments in quadrature methods

open such possibilities.

3.1.1 Quadrature Methods and Research Gap

As an alternative to QMC, quadrature has been explored in the discrete choice

literature (Heiss and Winschel, 2008; Heiss, 2010; Abay, 2015; Patil et al., 2017;

Goos and Mylona, 2018). Quadrature methods mainly differ from QMC in two

ways, as quadrature a) generally assumes that the integrand can be approximated

on a polynomial space; b) uses deterministic draws (or nodes) that carry unequal

weights.

The Gaussian quadrature method approximates one-dimensional integrals

with just a few nodes.4 Quadrature can be simply extended to multiple dimen-

sions using the tensor product. However, this multidimensional extension of

quadrature suffers from the curse of dimensionality: the number of nodes (i.e.,

function evaluations) increases exponentially with the number of dimensions,

making it impractical beyond 4-5 dimensions. Smolyak (1963) proposed a way

4A K−times differentiable integrand can be approximated by a polynomial of degree K, and
thus the resulting integral with surrogate integrand can be approximated using just K+1

2 nodes
(Golub and Welsch, 1969).
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to extend the univariate quadrature rule to multiple dimensions in a method

that is often called sparse grid quadrature (SGQ) in the literature. For example,

whereas Gaussian quadrature can exactly compute an integral with a univariate

polynomial of order 5 with 3 nodes, the same function in 20 dimensions requires

320 = 3, 486, 784, 401 and 841 nodes in product rule quadrature and SGQ methods,

respectively (Heiss and Winschel, 2008).

Heiss and Winschel (2008) have demonstrated that SGQ performs much better

than QMC in estimation of the MMNL model with even up to 20 random pa-

rameters. Further, Heiss (2010) combined SGQ with efficient importance sampler

(EIS)(Richard and Zhang, 2007) to estimate MNP and panel binary probit models,

and demonstrated superiority of this hybrid SGQ-EIS approach over traditional

QMC methods.

Even if nodes and weights in SGQ can be pre-computed and stored for reuse

as easily as in traditional QMC methods, SQG methods have not been adopted in

practice due to three possible reasons. First, weights computed in SGQ can be neg-

ative. Whereas Heiss and Winschel (2008) discussed this concern as an eventual

possibility, the authors claimed not to encounter any such issue – perhaps due

to a very simplistic simulation design with a (low-variance) diagonal variance-

covariance matrix. In contrast, in our experience we always encountered the issue

of negative choice probability estimates for a few individuals coming from neg-

ative weights, which in addition to be meaningless numerically led to imaginary

(complex) loglikelihood values. Patil et al. (2017) also encountered convergence
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issues due to negative weights while applying the SGQ-EIS method in estima-

tion of multinomial probit. Second, the required number of nodes to accurately

approximate the integral using SGQ depends on the functional properties of the

integrand, but the researcher is generally not aware of these properties. Third,

whereas SGQ reduces the number of nodes significantly as compared to the prod-

uct rule, the cardinality remains very high relative to that of QMC for high di-

mensional integrals. Concerns two and three can be illustrated with the following

example. If the integrand in a ten-dimensional integral can be well approximated

using a 3rd-order polynomial, Gaussian SGQ just needs 21 nodes, but the num-

ber of required nodes and thus the number of function evaluations increases to

8, 761 for a 9th-order polynomial (Heiss and Winschel, 2008). The combined con-

sequences of concerns two and three is confirmed by Abay (2015) in estimation of

a panel binary probit – SGQ outperforms QMC for dimensions below or equal to

4, but QMC starts dominating SGQ for higher dimensions, and the difference is

apparent as panel covariance increases.5

3.1.2 Moment-base Quadrature and Contributions

More recent developments in quadrature methods could address the main con-

cerns of SGQ. Whereas Ryu and Boyd (2015) showed that numerical quadrature

can be obtained by solving an infinite-dimensional linear program (LP), Jakeman

5Note that higher panel covariance in binary probit makes the integrand (i.e., loglikelihood) less
smooth leading to a higher order polynomial (i.e., higher number of nodes or function evaluations)
are required to approximate the integral at the same level of accuracy.
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and Narayan (2018) used the same flexible moment-based optimization frame-

work to obtain a numerical quadrature rule. Very recently, Keshavarzzadeh et al.

(2018) simplified this moment-based strategy by solving a relaxed version of the

original optimizarion problem and came up with a new numerical quadrature

rule known as designed quadrature (DQ).

DQ has many key features. This flexible, new framework allows the researcher

to add a constraint to always obtain positive weights. Moreover, DQ rules can

be constructed over non-standard geometries of the support of the nonnegative

weight function6 and on more general polynomial spaces (e.g., hyperbolic cross

polynomial space) instead of restricting to just total-order polynomial spaces. In

fact, DQ requires relatively fewer nodes than SGQ. For example, to approximate

a 10 dimensional integral with a polynomial of total order 5 as integrand, DQ

requires 148 nodes while nested SGQ needs 201 nodes.7 To the best of our knowl-

edge, full potential of moment-based numerical quadrature rules have not been

explored in the econometrics literature. Thus, the contribution of study is twofold:

i) we address the bottlenecks of the traditional SGQ method by applying the re-

6For example, Keshavarzzadeh et al. (2018) considered the support of weight function to be
“U" shape while generating DQ.

7In the absence of information about functional properties of the integrand, the issue of as-
suming that the pre-specified order of polynomial would approximate the integrand persists in
DQ. However, adaptive SGQ methods (Ma and Zabaras, 2009; Brumm and Scheidegger, 2017;
Cagnone and Bartolucci, 2017; Bhaduri and Graham-Brady, 2018) are capable of handling this is-
sue. In fact, these adaptive methods are not restricted to polynomial basis functions, and thus
hierarchical linear or non-linear basis functions are generally used to capture the local behavior
of the integrand. The problem is that these methods are generally computationally expensive and
since the basis function is adaptively updated in each dimension based on properties of the in-
tegrand, the nodes and weights need to be computed for each problem (i.e., cannot be reused).
Cagnone and Bartolucci (2017) show possibilities of parallel computation to make adaptive SGQ
faster, but exploring those possibilities is beyond the scope of this study.
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cently developed designed quadrature (DQ) method (Keshavarzzadeh et al., 2018)

in maximum simulated likelihood estimation of discrete choice models; (ii) using

a Monte Carlo study and an empirical application, we show superiority of DQ

over QMC methods in estimation of MMNL with varying number of random pa-

rameters (3, 5, and 10) and correlation structures (diagonal, low covariance, and

high covariance).

The rest of the chapter is organized as follows: section 2 briefly describes the

MMNL model and its estimation, section 3 discusses univariate quadrature, mul-

tivariate quadrature, and DQ methods, section 4 explains the Monte Carlo sim-

ulation design and summarizes corresponding results, section 5 compares QMC

methods with DQ on an empirical study, and conclusions and future work are

detailed in section 6.

3.2 Mixed Multinomial Logit Model

Consider that the conditional indirect utility derived by decision-maker i from

making choice j in choice situation t is:

Uit j = xT
it jα + zT

it jβi + εit j, (3.1)

where i ∈ {1, . . . ,N}, j ∈ {1, . . . , J}, and t ∈ {1, . . . ,T }. The covariate vector xit j has a

fixed preference parameter vector α and zit j has a random, agent-specific parame-

ter vector βi. The preference shock εit j is independent across individuals, choices
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and time, and is identically distributed Type-I Extreme Value. Thus, the probabil-

ity of choosing alternative j by individual i in choice situation t, conditional on βi,

has a logit link:

Pit j(α,βi) =
exp

(
xT

it jα + zT
it jβi

)
∑J

k=1 exp
(
xT

itkα + zT
itkβi

) . (3.2)

For an individual i who chooses alternative j in choice situation t, we define

the indicator dit j = I(j chosen|i, t). For the sequence of choices made by individual

i, the conditional likelihood Li(α,βi) is:

Li(α,βi) =

T∏
t=1

J∏
j=1

[Pit j(α,βi)]dit j . (3.3)

Consider that the random parameter βi is multivariate normally distributed

with mean γ and variance-covariance matrix ∆. Thus, the loglilkelihood `(ψ) of

the sample in terms of the unconditional likelihood Pi(ψ) of individual i is:

`(ψ) =

N∑
i=1

ln
(
Pi(ψ)

)
=

N∑
i=1

ln
( ∫

β

Li(α,β) f (β|γ,∆)dβ
)
,

where ψ = {α,γ,∆}.

(3.4)

Since the sample loglikelihood `(·) in equation 3.4 is analytically intractable,

the parameter vector ψ can be estimated by maximizing the sample’s simulated

loglikelihood ˜̀(·):

˜̀(ψ) =

N∑
i=1

ln
( R∑

r=1

Li(α,βir)wi(βir|γ,∆)
)
. (3.5)
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Note that βir and wi(βir|γ,∆) are viewed as nodes and weights in the quadra-

ture method, respectively. In the QMC simulation literature, nodes are generally

denoted by draws and the weight wi(βir|γ,∆) attains the value of 1
R for all draws8.

3.3 Quadrature Methods

3.3.1 Notation

We adopt the notation of Keshavarzzadeh et al. (2018) to illustrate the intuition

and key results of different quadrature methods. We reconsider the integral ap-

proximation problem: ∫
Γ

f (x)ω(x)dx ≈
n∑

q=1

f (xq)wq, (3.6)

where ω(x) is a given weight function (or a probability density function) whose

support is Γ ⊂ Rd. A point x ∈ Rd has components x =
(
x(1), x(2), . . . , x(d)

)
.

We define α ∈ Nd
0 as a multi-index, and Λ as a downward closed set9 of multi-

indices:
8Note that even though βir is a realization of N(γ,∆), the model is reparametrized in terms of

the Cholesky decomposition of ∆ to ensure positive definiteness. Thus, when approximating the
loglikelihood with quadrature or QMC methods, we always work with standard normal distribu-
tions.

9If α, β ∈ Nd
0, then α ≤ β if and only if all component-wise inequalities are true. Using this

definition, a multi-index set Λ is called downward closed if α ∈ Λ =⇒ β ∈ Λ ∀ β ≤ α.
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α = (α1, . . . , αd), xα =

d∏
j=1

(
x( j)

)α j
, |α| =

d∑
j=1

α j.

Our ultimate goal is to construct a set of n points
{
xq

}n

q=1
⊂ Γ and positive

weights wq > 0 in equation 3.6, but we attempt to achieve this by enforcing equal-

ity in equation 3.6 for a subspace Π of polynomials such that:∫
Γ

f (x)ω(x)dx =

n∑
q=1

f (xq)wq, f ∈ Π

Π = span
{
xα

∣∣∣ α ∈ Λ
}
.

(3.7)

Thus, under the assumption that the integrand f (·) is smooth enough to be

approximated in the polynomial subspace Π, solving for
{
xq

}n

q=1
and wq > 0 using

equation 3.7 should provide a good approximation of the integral in equation 3.6.

Whereas Keshavarzzadeh et al. (2018) proposed a numerical method to solve

equation 3.7 for a general polynomial subspaces, we restrict discussion to total

order (represented by subscriptT(.) ) polynomial spaces10 with the total order being

r:

ΠTr = span
{
xα

∣∣∣ α ∈ ΛTr

}
, where ΛTr =

{
α ∈ Nd

0

∣∣∣ |α| ≤ r
}
. (3.8)

10We also tried designed quadrature on hyperbolic cross polynomial subspaces, but its perfor-
mance was poorer than the total order polynomial spaces.
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3.3.2 Univariate Quadrature

We need to define first the basis for the polynomial space ΠTk . Note that a ba-

sis of orthonormal polynomials exists with elements pm(·) such that deg pm = m.

The family of these polynomials satisfies the following recursive relation (Askey,

1975):

xpm(x) =
√

bm pm−1(x) + am pm(x) +
√

bm+1 pm+1(x),

am = (xpm, pm) bm =
(pm, pm)

(pm−1, pm−1)

(3.9)

After characterizing the one-dimension polynomial space, we present a theo-

rem which is the foundation of the Quadrature literature:

Theorem 1 (Gaussian quadrature) Let x1, . . . , xn be the roots of the nth orthogonal

polynomial pn(x) and let w1, . . . ,wn be the solution of the system of equations

n∑
q=1

p j(xq)wq =


√

b0, if j = 0

0, for j = 1, . . . , n − 1.
(3.10)

Then xq ∈ Γ and wq > 0 for q = 1, 2, . . . , n, and∫
Γ

p(x)ω(x)dx =

n∑
q=1

p(xq)wq (3.11)

holds for all polynomials p ∈ ΠT2n−1 .

According to Theorem 1, nodes and weights in equation 3.11 (which is a one-

dimensional version of equation 3.7) can be exactly obtained by solving the sys-
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tem of equations (moment-matching conditions) summarized in equation 3.10. A

more intuitive implication of Theorem 1 is that if the integrand can be exactly

specified on a polynomial space of order 2n− 1, only n nodes are required to com-

pute the corresponding univariate integral precisely. Golub and Welsch (1969)

and Davis and Rabinowitz (2007) provide a detailed procedure to compute this

univariate quadrature rule.

3.3.3 Multivariate Quadrature

In product rules, univariate quadrature can be simply extended to multivariate

quadrature using a tensor product. More specifically, the weight function ω(x)

and its support Γ can be written as follows:

Γ = ×d
j=1Γ j, ω(x) =

d∏
j=1

ω j

(
x( j)

)
,

where Γ j ⊂ R is univariate domain and ω j(·) is a univariate weight. If p( j)
n (·) is the

univariate orthonormal polynomial family corresponding to ω j over Γ j, then the

family of multivariate polynomials orthonormal under ω can be written as:

πα(x) =

d∏
j=1

p( j)
α j

(
x( j)

)
, α ∈ Nd

0.

The corresponding polynomial space is: ΠTr = span
{
πα

∣∣∣ α ∈ ΛTr

}
. After char-

acterizing the polynomial subspace, the moment-matching conditions of Theorem

1 can be extended to the multivariate case as follows:

92



www.manaraa.com

Proposition 1 Let Λ be a multi-index set with 0 ∈ Λ. Suppose that x1, . . . , xn

and w1, . . . ,wn are the solution of the system of equations

n∑
q=1

πα(xq)wq =


1/π0, if α = 0

0, if α ∈ Λ\{0}
(3.12)

then ∫
Γ

ω(x)π(x)dx =

n∑
q=1

π(xq)wq (3.13)

holds for all polynomials π ∈ ΠΛ.

Note that unlike Theorem 1, the above proposition neither guarantees the posi-

tivity of weights nor ensures that nodes belong to support Γ. Although sparse grid

quadrature (SGQ) provides an efficient way to combine multiple dimensions so

as to reduce the function evaluations, it does not provide remedy for these issues.

We did not consider SGQ in this study, because: a) in our initial test runs, negative

weights in SGQ led to complex (imaginary) loglikelihood values in estimation of

MMNL with full variance-covariance matrix; b) based on extensive simulations

studies, Keshavarzzadeh et al. (2018) confirmed that designed quadrature (DQ)

requires many fewer nodes than SGQ. Heiss and Winschel (2008) can be referred

for intuitive and theoretical discussion on SGQ rules.
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3.3.4 Designed Quadrature (DQ)

DQ solves a relaxed version ofthe moment-matching conditions given in equation

3.12, which enforces positivity of weights and also ensure nodes to fall in the sup-

port of the probability density function. Keshavarzzadeh et al. (2018) reformulates

the moment-matching conditions as follows:

For a given index set Λ with size M = |Λ|, consider the matrix X ∈ Rd×n with

columns x j, and let w ∈ Rn be a vector containing the n weights. Let V(X) ∈ RM×n

denote the Vandermonde-like matrix with entries

(V)k, j = πα(k)

(
x j

)
, k = 1, . . . ,M j = 1, . . . , n, (3.14)

where elements of Λ are considered with ordering α(1), . . .α(M) and α(1) = 0. The

system (3.12) can then be written as:

V (X) w = e1/π0, (3.15)

where e1 = (1, 0, 0, . . . , 0)T ∈ RM. Instead of solving the moment-matching condi-

tions exactly in equation 3.15, Keshavarzzadeh et al. (2018) proposed to obtain the

approximate solution (X,w) that satisfies:

‖V (X) w − e1/π0‖2 = ε ≥ 0. (3.16)

In fact, Keshavarzzadeh et al. (2018) provide bounds on the integral error∣∣∣∫ f (x)ω(x)dx −
∑n

q=1 f (xq)wq

∣∣∣ in terms of tolerance ε, which is computable for a

given quadrature rule.
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Thus, for a given polynomial subspace, DQ aims to compute nodes X =

{x1, . . . , xn} ∈ Γn and positive weights w ∈ (0,∞)n that solves the following con-

strained optimization problem:

min
X,w

||V(X)w − e1/π0||2

subject to x j ∈ Γ, j = 1, . . . , n
w j > 0, j = 1, . . . , n.

(3.17)

Readers can refer to Keshavarzzadeh et al. (2018) for more insights about

strategies (e.g., constrained optimization problem) to solve the above optimiza-

tion problem.

3.3.5 Discussion

In the context of this study, we explore possibilities of approximating the uncon-

ditional choice probability integral (see equation 3.4) in MMNL using DQ. We

assume that the conditional choice probability (integrand in equation 3.4) can be

approximated on total order polynomial space. Since properties of the integrand

vary with the data generating process and are thus not known beforehand, the

performance of the approximation will depend on the assumed order of the poly-

nomial space. Moreover, whereas SGQ predetermines the exact number of nodes

based on the order (r) of the polynomial space and dimension of the integral,

DQ rules can be obtained (i.e., the optimization problem in equation 3.17 can be

solved) for various possible number of nodes (n). Thus, for a given integral dimen-
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sion, one can generate DQ rules for different total order (r) polynomial spaces and

different number of nodes (n).

In both parametric and non-parametric MMNL models, the choice probability

integral can generally be reparameterized such that the weight functionω(.) in DQ

turns out to be a probability density function of a standard normal (e.g., normal

or lognormal mixing distributions) or a standard uniform distribution (e.g., semi-

parametric logit-mixed logit model)11. Just as in QMC methods we can generate,

store and reuse draws/nodes for both standardized distributions, DQ offers the

same flexibility. The researcher can solve the optimization problem in equation

3.17 beforehand for different combinations of dimensions, order of polynomial,

and number of nodes, and then reuse the stored nodes and weights.

In sum, DQ may appear more cumbersome than QMC methods at first, but re-

usability of the nodes and weights not only makes DQ equally easy to implement

in practice and in fact, even fewer function evaluations are needed (i.e., lower

computation time is achieved). Nevertheless, for a given dimension of integral,

whereas QMC needs tuning of the number of draws to get stable parameter es-

timates, DQ requires to tune the total order of polynomial spaces and the corre-

sponding number of draws. In the next section we conduct a detailed simulation

study to make recommendations about selection of these parameters in the con-

text of MMNL.
11The support Γ of standard normal and standard distributions are whole real line and [0, 1],

respectively
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3.4 Monte Carlo Study

3.4.1 Simulation Design

The objective of the simulation study is to evaluate the performance of DQ rela-

tive to QMC methods in MMNL estimation. We considered modified latin hyper-

cube sampling (MLHS), which has shown to be superior than other QMC methods

such as randomized and scrambled Halton sequences (Hess et al., 2006),12 as rep-

resentative of QMC methods. As data generating process (DGP) we considered

a sample of 1000 decision makers who are assumed to choose a utility maximiz-

ing alternative from a set of five alternatives across five choice situations. Since

the number of random parameters governs the dimension of the choice probabil-

ity integral in MMNL, we compared performance of DQ and MLHS in MMNL

with three, five, and ten normally-distributed random parameters. For each ran-

dom parameter scenario, we considered three covariance structures: zero (diag-

onal), low, and high covariance across random parameters. The considered low

(∆5
low cov.) and high (∆5

high cov.) covariance matrices for five random parameters are il-

lustrated below; similar structures were considered for dimensions three and ten.

This sensitivity analysis is crucial because the performance of DQ depends on the

smoothness of integrand (i.e., conditional likelihood), which in turn depends on

the structure of the covariance matrix.
12In practice, MLHS and Halton methods are interchangeably used and perform equally well.
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∆5
low cov. =



1.5 0.2 0.2 0.2 0.2
0.2 1 0.2 0.2 0.2
0.2 0.2 1 0.2 0.2
0.2 0.2 0.2 1 0.2
0.2 0.2 0.2 0.2 1.5


∆5

high cov. =



1.5 0.5 0.5 0.5 0.5
0.5 1 0.5 0.5 0.5
0.5 0.5 1 0.5 0.5
0.5 0.5 0.5 1 0.5
0.5 0.5 0.5 0.5 1.5


We generated 250 datasets in total for each covariance structure: 100 datasets

for three and five random parameters, and 50 datasets for ten random parame-

ters.13 For each of 750 datasets, we performed maximum simulated likelihood

estimation (with analytical gradient) using a different number of MLHS draws

and different total order polynomial subspaces and nodes (or draws) of DQ. We

summarize results by computing the following four metrics across resamples: av-

erage loglikelihood at convergence, finite sample standard error (FSSE, or standard

deviation of the point estimates), absolute percentage bias (APB)14, and value of

the t-distributed test statistic15 under the null hypothesis that the point estimate is

equal to the true population parameter. To avoid empirical identification issues,

we computed FSSE, APB, and t-value for parameter ratios. We compute these

statistics for each parameter, but report averages across all parameters for suc-

13We restricted the number of resamples to 50 for ten random parameters due to high computa-
tion time.

14We compute the absolute percentage bias (APB) of a parameter for a sample as follows:

APB=

∣∣∣∣∣Parameter Estimate - True Parameter Value
True Parameter Value

∣∣∣∣∣ × 100. The mean of APB across all resamples

is reported.
15We compute the statistic to test the parameter recovery as follows:

Mean of the Point Estimate across Resamples - True Parameter Value
FSSE

. As the test statistic
gets smaller. we become more confident that the estimated parameter is close to the population
parameter.
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cinctness. We wrote MATLAB code to generate DQ rules and perform MMNL es-

timation. DQ rules were generated beforehand, stored, and reused for estimation.

We considered tolerance ε in equation 3.16 to be 10−8. We performed sensitivity

analysis with tighter tolerances but those did not improve accuracy.

3.4.2 Results and Discussion

The results of the Monte Carlo study for random parameters (integral dimensions)

three, five, and ten are summarized in Tables 3.1, 3.2, and 3.3, respectively.

As the dimension of the integral increases, the minimum number of nodes re-

quired to generate the appropriate DQ rule at a given polynomial order (r, also

known as accuracy level) increases. For example, we could generate the DQ rule

for higher order r = 7 with just 30 nodes for three dimensions (see Table 3.1), but

to solve the DQ optimization problem (up to a prespecified tolerance ε) for the

same order in five dimensions needed more than 100 nodes (see Table 3.2). Also,

for a given dimension of the integral, more nodes are required in higher order

polynomial spaces. For example, we could generate the DQ rule for ten dimen-

sions with 100 nodes for a polynomial of order r = 4, but needed a minimum of

200 nodes for r = 5 (see Table 3.3).

We now compare model fit (loglikelihood) of DQ and MLHS. In the diagonal

variance-covariance case, DQ outperformed MLHS by a significant margin, even

when DQ was generated on polynomial spaces with a relatively low order. For
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the five dimensional case, DQ achieved better model fit (loglikelihood: -5355.2)

with just 100 nodes at r = 6 than 500 MLHS draws (loglikelihood: -5357.4). In fact,

DQ with 100 nodes at r = 4 (loglikelihood: -5013.6) outperformed MLHS with 500

draws (loglikelihood: -5016.0) in approximating the higher (i.e., ten) dimensional

integral.

DQ also outperformed MLHS in the non-diagonal variance-covariance sce-

narios, but higher order of polynomial subspaces are desirable in this non-

independent case. These observations are aligned with intuition: introducing

covariance makes the integrand more complex (Abay, 2015), which can be bet-

ter approximated on higher order polynomial subspaces. For example, in the case

of five random parameters with a low covariance DGP, whereas DQ could achieve

a model fit of -5794.2 with just 300 nodes at r = 7, MLHS required 500 draws to

achieve virtually the same model fit; however, 300 nodes of DQ at r = 5 were out-

performed by 300 MLHS draws. Consistent with intuition, we generally observed

that increasing the order of polynomial subspaces results into better model fit. We

have seen some exceptions to this trend for three random parameters with non-

zero covariance, but for a very low number of draws (ie., 30 and 50) which are

often not used in practice (see Table 3.1). As a general trend, across all dimensions

and covariance structures, the highest order in DQ (r = 7, 7, and 5 for dimensions

3, 5, and 10) resulted in better model fit than MLHS at a given number of draws.
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Table 3.1: Comparison of DQ and MLHS (Monte Carlo, Random Parameters=3)

(-)Loglikelihood APB FSSE t-value

Draws MLHS
DQ

MLHS
DQ

MLHS
DQ

MLHS
DQ

r=6 r=7 r=6 r=7 r=6 r=7 r=6 r=7

Diagonal

30 5752.2 5727.4 5726.2 6.7 5.9 5.8 0.032 0.028 0.028 0.37 0.37 0.35

50 5739.9 5726.2 5725.3 6.1 5.7 5.7 0.030 0.029 0.028 0.35 0.32 0.31

100 5733.1 5725.6 5725.3 5.9 5.7 5.5 0.029 0.028 0.028 0.33 0.32 0.31

150 5730.0 5.8 0.029 0.32

Low Covariance

30 5914.8 5851.8 5856.4 26.1 20.4 19.4 0.085 0.068 0.069 0.58 0.45 0.50

50 5856.4 5825.0 5834.2 22.3 17.8 18.3 0.076 0.065 0.069 0.45 0.34 0.43

100 5816.3 5816.0 5805.0 19.6 20.0 18.4 0.071 0.074 0.066 0.35 0.19 0.20

150 5803.6 17.9 0.065 0.25

High Covariance

30 5914.7 5863.1 5866.3 14.7 14.0 13.3 0.080 0.071 0.070 0.60 0.61 0.54

50 5862.0 5831.4 5846.8 13.0 10.3 12.1 0.076 0.063 0.072 0.46 0.31 0.38

100 5826.4 5821.4 5815.3 11.5 10.4 10.1 0.070 0.067 0.063 0.35 0.23 0.21

150 5814.6 10.6 0.065 0.26

Note: APB is absolute percentage bias, FSSE is finite sample standard error, and DQ is designed quadrature.
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Table 3.2: Comparison of DQ and MLHS (Monte Carlo, Random Parameters=5)

(-)Loglikelihood APB FSSE t-value

Draws MLHS
DQ

MLHS
DQ

MLHS
DQ

MLHS
DQ

r=5 r=6 r=7 r=5 r=6 r=7 r=5 r=6 r=7 r=5 r=6 r=7

Diagonal

50 5389.4 5361.2 8.7 6.3 0.055 0.033 0.33 0.34

100 5373.9 5356.6 5355.2 6.7 6.0 5.8 0.037 0.033 0.032 0.26 0.25 0.24

200 5364.4 5354.8 5354.4 5353.5 6.1 5.9 5.7 5.6 0.034 0.033 0.032 0.032 0.23 0.25 0.22 0.21

300 5360.2 5354.6 5353.6 5353.3 5.8 5.8 5.7 5.6 0.033 0.032 0.032 0.032 0.22 0.25 0.21 0.20

500 5357.4 5.7 0.033 0.22

Low Covariance

50 5966.3 5902.8 37.0 32.6 0.097 0.084 0.21 0.57

100 5882.2 5847.2 5840.8 31.9 29.4 26.5 0.087 0.083 0.076 0.22 0.16 0.29

200 5829.1 5820.6 5814.2 5811.3 26.7 28.0 26.0 26.2 0.077 0.082 0.074 0.076 0.18 0.13 0.22 0.18

300 5810.0 5817.0 5803.2 5794.2 25.6 28.6 24.6 24.1 0.075 0.080 0.073 0.070 0.18 0.20 0.19 0.17

500 5794.5 23.8 0.071 0.15

High Covariance

50 5890.3 5840.9 23.5 20.3 0.100 0.083 0.36 0.60

100 5818.7 5793.7 5790.9 18.0 18.3 18.0 0.084 0.082 0.082 0.25 0.27 0.31

200 5772.9 5764.5 5762.1 5760.0 15.4 17.3 15.1 15.7 0.074 0.080 0.071 0.075 0.19 0.19 0.21 0.20

300 5757.1 5763.8 5753.1 5747.3 15.2 16.6 14.4 14.1 0.073 0.077 0.069 0.069 0.18 0.21 0.20 0.17

500 5743.6 13.8 0.068 0.16

Note: APB is absolute percentage bias, FSSE is finite sample standard error, and DQ is designed quadrature.
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Table 3.3: Comparison of DQ and MLHS (Monte Carlo, Random Parameters=10)

(-)Loglikelihood APB FSSE t-value

Draws MLHS
DQ

MLHS
DQ

MLHS
DQ

MLHS
DQ

r=4 r=5 r=4 r=5 r=4 r=5 r=4 r=5

Diagonal

50 5044.4 26.7 0.112 0.72

100 5032.1 5013.6 22.5 15.2 0.109 0.085 0.59 0.44

200 5022.1 5013.2 5010.8 17.3 12.3 11.0 0.097 0.068 0.067 0.47 0.43 0.33

300 5018.1 5011.0 5010.8 14.1 11.1 11.1 0.085 0.064 0.069 0.37 0.39 0.33

500 5016.0 5011.0 11.9 9.1 0.074 0.052 0.33 0.32

Low Covariance

50 6182.4 125.7 0.232 0.34

100 6126.2 6078.6 104.2 85.0 0.198 0.160 0.27 0.31

200 6075.8 6050.0 6042.7 80.0 66.1 68.0 0.159 0.124 0.130 0.21 0.25 0.25

300 6054.4 6031.6 6032.8 67.0 64.7 64.5 0.126 0.125 0.123 0.20 0.24 0.23

500 6027.4 6013.8 60.0 56.2 0.118 0.108 0.18 0.20

High Covariance

50 5943.0 86.6 0.205 0.46

100 5893.0 5863.3 83.8 70.9 0.199 0.174 0.35 0.35

200 5860.4 5844.2 5842.5 69.5 59.6 58.4 0.174 0.153 0.150 0.28 0.26 0.21

300 5842.1 5834.2 5832.9 63.5 60.7 54.7 0.161 0.158 0.139 0.23 0.28 0.21

500 5822.2 5818.6 47.4 45.1 0.127 0.116 0.17 0.19

Note: APB is absolute percentage bias, FSSE is finite sample standard error, and DQ is designed quadrature.
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As expected, across DQ and MLHS all parameter recovery metrics – APB,

FSSE, and t-value – decrease with an increase in the number of draws (or nodes).

Consistent with model fit, DQ surpassed MLHS by a significant margin in recov-

ering true parameters if the variance-covariance matrix is diagonal. For instance,

DQ could achieve lower values of all parameter recovery metrics with 200 nodes

(on polynomial space of order r = 7) than those of 500 MLHS draws for the DGP

with five random parameters (see Table 3.2). In fact, DQ also performed better

than MLHS across correlated covariance structures, but at higher order polyno-

mial subspaces. For example, in DGP with five highly correlated random param-

eters, APB, FSSE, and t-value using 300 MLHS draws are 15.2%, 0.073, and 0.18

respectively, but for 300 DQ nodes whereas at r = 5 these values are relatively

higher – 16.6%, .077, and 0.21, they are relatively lower – 14.1%, 0.069, and 0.17 at

r = 7 (see Table 3.2).

In sum, better model fit and more precise parameter recovery of DQ across

all dimensions and covariance structures make DQ a strong substitute to QMC

methods in practice.
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3.5 Empirical Study

We now compare the performance of DQ and QMC while studying the preference

of travelers in New York City (NYC) for mobility-on-demand (MoD) services (e.g.,

Uber and UberPool).

3.5.1 Experiment Design

We conducted a stated preference survey in NYC. The survey included a discrete

choice experiment (DCE) in which each respondent was asked to choose the best

and the worst travel mode from a set of three choices: Uber (without ridesharing),

UberPool (with ridesharing), and their current travel mode (the one used most of-

ten on their most frequent trips). We first conducted a pilot study (N=298) using

D-efficient design with zero priors in February 2017. We then used prior parame-

ter estimates from the pilot study to create a pivot-efficient design16 with 6 blocks

(7 choice situations per block). Table 3.4 shows the attribute levels of the DCE

design and an instance of choice situation. More details about the experiment

design can be found in Liu et al. (2018). We conducted the main study during

October-November 2017. After data validation tests, preferences of 1507 (out of

1689) respondents were used in estimation.

16In pivot-efficient designs, attribute levels shown to the respondents are pivoted from reference
alternatives for each respondent. In this study, the travel mode used on the most frequent trips
was considered as the reference alternative.
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Table 3.4: Experiment Design for Mode Choice Study

Attribute Levels in the Experiment Design
Uber (Without Ridesharing) UberPool (With Ridesharing) Current Mode

Walking and Waiting Time 25%, 50%, 75%, 100% 25%, 50%, 75%, 100% asked (100%)
In-vehicle Travel Time 80%, 95%, 110%, 125% 90%, 105%, 120%,135% asked (100%)
Trip Cost Per Mile ($)
(Excluding Parking Cost)

0.55, 0.70, 0.85, 1.0, 1.2 0.45, 0.60, 0.70, 0.80 asked or computed

Parking Cost 0 0 asked
Powertrain Gas, Electric Gas, Electric Gas
Automation Yes, No Yes, No No

Instance of a Choice Situation
Uber (Without Ridesharing) UberPool (With Ridesharing) Current Mode: Car

Walking and Waiting time 6 minutes 9 minutes 12 minutes
In-vehicle Travel Time 38 minutes 50 minutes 48 minutes
Trip Cost
(Excluding Parking Cost)

$11 $8 $6

Parking Cost – – $6
Powertrain Electric Gas Gas
Automation Service with Driver Automated (No Driver) –

Note: All % are relative to the reference alternative.
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3.5.2 Estimation and Results

We considered marginal utilities of all five alternative-specific variables to be

normally-distributed. This specification led to a five dimensional integral in

MMNL estimation. We also considered randomized and scrambled Halton draws

along with MLHS and DQ. The number of draws/nodes was varied from 50 to

500 and total order (r) of polynomial subspaces in DQ ranged from 5 to 7. We con-

sidered 50 different starting values and for each starting value, 19 models were

estimated considering different QMC draws and DQ nodes.

Table 3.5: Comparison of -Loglikelihood Values in the Case Study

Number of Draws MLHS Halton Draws
Designed Quadrature

r=5 r=6 r=7

50 8206.5 8245.4 8233.5

100 8168.5 8182.9 8149.5 8151.7

200 8142.1 8151.1 8155.2 8144.5 8124.2

300 8134.1 8142.1 8155.2 8129.8 8121.7

500 8128.1 8135.2

Table 3.5 summarizes the average of model fit across different starting values.

In this study, MLHS draws resulted in better model fit than Halton draws across

all considered scenarios. The performance of DQ is consistent with the Monte

Carlo study – whereas QMC methods dominated DQ at lower order r = 5, DQ

generated at higher orders 6 and 7 always outperformed QMC methods across all

considered draws. In fact, 200 nodes in DQ at order r = 7 could achieve better

model fit (-8124.2) than those of 500 Halton (-8135.2) or MLHS (-8128.1) draws.
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Table 3.6: Comparison of Estimates and Standard Errors in the Case Study

Estimates z-scores
MLHS DQ MLHS DQ

Draws 200 500 300 (r=6) 200 (r=7) 300 (r=7) 200 500 300 (r=6) 200 (r=7) 300 (r=7)
Mean
OVTT/100 (min) -1.65 -1.67 -1.98 -1.66 -1.84 -3.89 -3.68 -4.47 -4.45 -4.48
IVTT/100 (min) -10.76 -10.94 -11.18 -11.36 -10.85 -17.96 -17.82 -18.16 -16.74 -17.74
Trip Cost/10 ($) -3.32 -3.41 -3.45 -3.79 -3.62 -19.20 -18.81 -19.02 -18.63 -19.08
Electric? -0.38 -0.38 -0.39 -0.41 -0.41 -6.15 -6.08 -6.08 -6.35 -6.30
Automation? -0.49 -0.50 -0.53 -0.53 -0.54 -7.48 -7.40 -7.49 -7.33 -7.59

Cholesky components
L11 0.10 0.79 0.33 1.04 2.16 0.17 1.25 0.54 1.60 3.20
L21 0.58 0.14 1.04 1.45 1.09 0.66 0.15 0.95 1.65 1.27
L22 9.09 8.72 7.03 8.66 8.95 13.35 12.83 10.37 10.91 13.79
L31 0.20 0.09 0.49 1.26 0.70 1.24 0.47 3.28 8.19 3.73
L32 1.33 1.28 1.46 1.86 1.30 8.84 7.38 9.89 12.88 8.71
L33 2.68 2.21 2.10 2.97 2.30 14.47 10.80 10.76 15.96 12.69
L41 0.01 -0.09 0.02 -0.05 -0.22 0.07 -1.02 0.21 -0.56 -2.44
L42 0.14 0.13 0.24 0.23 0.22 1.32 1.21 2.77 2.37 2.22
L43 0.34 0.24 0.25 0.36 0.30 3.44 2.30 2.40 3.60 3.12
L44 0.22 0.28 0.69 0.02 0.68 1.64 2.22 5.87 0.18 6.08
L51 -0.01 -0.10 -0.02 -0.10 -0.23 -0.13 -0.92 -0.16 -1.01 -2.31
L52 0.06 0.06 0.22 0.17 0.13 0.51 0.50 2.28 1.70 1.19
L53 0.32 0.21 0.25 0.32 0.33 2.92 1.80 2.21 2.98 3.09
L54 0.22 0.22 0.56 0.14 0.39 1.28 1.27 3.84 1.05 2.67
L55 -0.16 -0.19 0.14 -0.55 -0.27 -0.92 -1.31 1.12 -3.72 -1.76

Loglikelihood -8142.1 -8128.1 -8129.8 -8124.2 -8121.7
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Table 3.6 shows the parameter estimates and z-scores for selected MLHS draws

and DQ nodes. The mean estimates of MLHS and DQ are similar and in fact,

z-score values are also in a similar range. The Cholesky components (e.g., L22

and L33) which are statistically significant in MLHS remains significant in DQ

and as expected, corresponding point estimates are also more stable across the

considered draws. A few Cholesky components (e.g., L11 and L31) which are not

statistically significant in MLHS with 500 draws, appear significant in DQ with

300 draws at order r = 7. However, this observation requires further validation in

other case studies.

3.6 Conclusions

In this study, we have proposed the use of designed quadrature (DQ) to approxi-

mate multi-dimensional integrals in maximum simulated likelihood estimation of

discrete choice models. We have compared performance of DQ with traditionally

used QMC methods in a Monte Carlo and an empirical case study.

Whereas traditional sparse grid quadrature methods suffer from the prob-

lem of complex-valued loglikelihood due to negative weights, DQ could estimate

MMNL smoothly for DGPs with varying covariance structures, thanks to positiv-

ity of weights. The simulation and empirical study confirmed that DQ requires

fewer function evaluations than QMC if the variance-covariance matrix is diago-

nal. In DGPs with non-diagonal matrices and varying covariance structures, DQ
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always outperforms MLHS in terms of model fit and parameter recovery when

the quadrature rule is generated on higher order polynomial subspaces.

In sum, features like positivity of weights, computational efficiency due

to fewer function evaluations, and easy implementation due to reusability of

quadrature rules make DQ a potentially attractive alternative to QMC methods.

As a future work, we plan to test its sensitivity relative to sample size, number of

choice situations, number of alternatives, and other discrete choice models (e.g.,

multinomial probit, and semi-parametric logit models).

Furthermore, to ensure better performance of DQ over QMC, the key ques-

tion is: for a given dimension and number of draws, on what maximum order

of polynomial subspaces, DQ rule can be generated? Thus, also as future work,

taking advantage of the re-usability feature of DQ we plan to create software that

can store the DQ rules on the highest possible order for commonly encountered

dimensions, weight functions, and the number of nodes. With said software, DQ

is as easy to use as any other QMC method, but with better performance. In other

words, similar to QMC methods, the user would just need to choose the number

of draws for the given dimension and software can provide the best DQ rule.
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CHAPTER 4

A CONTINUOUS-MULTINOMIAL RESPONSE MODEL WITH A

T-DISTRIBUTED ERROR KERNEL

4.1 Introduction

Discrete-response (e.g., count, ordered, binary, multinomial) models are popular

across various disciplines such as applied economics, transportation, marketing,

and political science. In these models, error structures are specified at different

modeling levels because the researcher does not have full information about the

data generating process (DGP). For instance, the total indirect utility in additive

random utility maximization (ARUM) (McFadden, 1973) based choice models is

specified as the sum of a deterministic index (depending on observables) and a

random error term or taste shock. Such error specifications in empirical studies

are generally governed by ease of estimation rather than structural appropriate-

ness (Vijverberg and Vijverberg, 2016). In particular, without worrying about the

characteristics of the data in hand, Gumbel/extreme-value (logit) or normal (pro-

bit) error kernels are commonly used. These traditional logit and probit links have

been replaced by a t-distributed error kernel, i.e. a robit link (Liu, 2004), in multi-

level modelling applications to handle fat-tailed error distributions. Moreover,

a t-distribution with an estimable degree-of-freedom (DOF) actually generalizes

logit and probit.1 However, we are not aware of the use of the robit link in model-
1The t-distribution with about seven and a large (above thirty) DOF approximates logistic and

normal distributions, respectively.
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ing multinomial responses, perhaps because the benefits of the generalization are

unclear and the estimation of the resulting model is cumbersome.

In this study, we present the first application of a multinomial response model

with a t-distributed error kernel, multinomial robit (MNR) model henceforth.

Whereas the proposed MNR model retains all merits of the multinomial pro-

bit (MNP) model2, we illustrate three additional advantages of adopting MNR

in practice. First, we highlight that the robit link is superior to the probit link

in estimating and predicting preferences in unbalanced datasets where one or

more alternatives have small shares. Second, we parameterize the DOF of the

t-distributed error kernel as a function of demographics and show how this spec-

ification can help in capturing decision uncertainty of decision-makers that stan-

dard compensatory ARUM models cannot account for. Third, if the error distri-

bution in the true DGP is fat-tailed, unlike probit, the robit link can retrieve the

true model parameters at excellent accuracy. We numerically establish this benefit

of MNR over MNP in a Monte Carlo study.

Given the growing interest in the joint modeling of mixed datasets across mul-

tiple disciplines (see De Leon and Chough, 2013, for applications), we further ex-

tend MNR to a generalized continuous-multinomial (GCM) response model with

a t-distributed error kernel that facilitates simultaneous consideration of multiple

multinomial and multiple continuous dependent variables. We note that the ad-

2Similar to MNP, MNR allows for flexible substitution patterns – correlations across indirect
utilities of alternatives – without necessarily including variation in parameters across decision-
makers.
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vantages of considering a t-distributed (over a normally-distributed) error kernel

are even more evident in the GCM response model because fat-tailed distribu-

tions are more commonly observed in continuous outcomes. Moreover, the joint

GCM model offers several advantages, namely: a) statistically efficient estima-

tion, b) easier hypothesis testing and better power of statistical tests, c) avoidance

of inconsistencies in a situation when continuous and multinomial endogenous

outcomes affect each other (see Bhat et al., 2015, for a detailed discussion). For ex-

ample, the GCM response model is appropriate for the joint modeling of commute

distance (continuous variable) and choice of residential location (multinominal

variable) because both outcomes clearly affect each other. Joint modeling is thus

desirable, but it is generally intractable due to an absence of convenient distribu-

tions to represent the conditional and/or joint relationship between the outcomes.

The proposed GCM response model with a t-distributed error kernel (henceforth,

GCM-t) could not have been estimated conveniently without an elegant statistical

property of the t-distribution: the conditional distribution of a joint/multivariate

t-distribution is also a t-distribution (Ding, 2016).

The contribution of this study is thus threefold. First, we illustrate the impor-

tance of t-distributed error kernels in multinomial choice modeling. Second, we

derive a full-information maximum likelihood procedure to estimate MNR and

GCM-t models. The likelihood expressions of both models involve evaluation

of high-dimensional multi-variate-t-cumulative density (MVTCD) functions. We

adopt the composite marginal likelihood (or paired-likelihood) approach to first

decompose the multi-dimensional MVTNCD integral into multiple pairs and thus
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reduce the integral dimensionality (see Varin et al., 2011; Xu and Reid, 2011). Sub-

sequently, similar to the Geweke-Hajivassiliou-Keane (GHK) method to simulate

multivariate normal cumulative density functions (Genz, 1992; Hajivassiliou et al.,

1996), we use a separation-of-variables approach to simulate MVTCD functions

(Genz and Bretz, 1999). Third, we numerically verify the statistical properties of

the maximum likelihood estimator of the GCM-t model in a Monte Carlo study.

We also compare the performance of GCM-t and GCM with normally-distributed

error kernel (GCM-N) models in a second simulation study. Finally, we validate

the simulation results and highlight the advantages of the robit link (over probit)

in an empirical study in the context of policies for on-street parking with charging

facilities for electric vehicles. The empirical data looks into the adoption of elec-

tric vehicles and the outcomes of interest are a household’s vehicle miles traveled

(continuous) and vehicle-purchase preferences (multinomial).

The remainder of this chapter is organized as follows. We present the contex-

tual literature review in section 4.2; section 4.3 details specification of the GCM-t

model and derives its estimator; section 4.4 illustrates advantages of adopting

choice models with t-distributed error kernels in practice; 4.5 presents a compre-

hensive Monte Carlo study and highlights the benefits of GCM-t over GCM-N;

section 4.6 validates the simulation-based findings in the empirical study; and,

finally, section 4.7 concludes and discusses avenues of future research.
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4.2 Literature Review

Regarding flexibility in modeling limited dependent variables, there is an ex-

tensive literature covering semi-parametric error distributions for binary- and

multinomial-response models. However, we restrict our discussion to flexible,

parsimonious parametric error specifications, and highlight research gaps that

this study addresses.

To overcome constraints from the assumption of symmetric and thin-tailed er-

ror kernels in logit and probit models, existing research offers several alternative

error specifications with one or two additional shape parameters. In statistical

terms, whereas an error kernel with one additional parameter (e.g., t-distribution)

allows for the trade-off between skewness and kurtosis, two additional parame-

ters (e.g., skew t-distribution) accommodate several choices of both skewness and

kurtosis.

The scobit model derived from a Burr-10 distribution (Nagler, 1994), the ro-

bit model which considers a t-distribution with estimable DOF (Liu, 2004), and

the skew-probit model which assumes a skew-normal distribution with estimable

skew parameter (Bazán et al., 2010) are among well-known binary response mod-

els that use error kernels with one additional parameter. Error kernels with two

additional parameters, namely skewed t-distribution (Kim et al., 2007) and the

generalized Tukey lambda (GTL) family of distributions (Vijverberg and Vijver-

berg, 2016) have also been applied for binary outcomes.
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Some of these binary-response models with a flexible error structure have

been extended to the multinomial dependent variables. Castillo et al. (2008) and

Fosgerau and Bierlaire (2009) derived a multinomial choice model considering a

Weibull distribution on the error term in a specification that is also known as the

weibit model. Li (2011) proposed a generalized method to construct asymmetric

multinomial choice models for a family of error distributions with heteroskedas-

tic variance, which also nests the weibit and logit models. Recently, Nakayama

and Chikaraishi (2015) derived a unified multinomial choice model using the q-

generalized-extreme-value (q-GEV) distribution with an estimable shape param-

eter and applied their model to transportation network assignment problems.

Brathwaite and Walker (2018) identified that all these flexible multinomial models

impose restrictions on the magnitude and/or sign of the index function. To ad-

dress this concern, Brathwaite and Walker proposed a generalized link function

that eliminates the need for such restrictions.

Note that all the multinomial choice models overviewed above have tractable

closed-form choice probability expressions but suffer from a major limitation – the

joint modeling of multiple types of dependent variables (e.g., continuous, ordinal,

and count) and the inclusion of spatial and social dependencies in these models

are computationally intractable, if not impossible, due to an increase in the dimen-

sionality of integration (see Guevara et al., 2009, for a discussion on the curse of

dimensionality in choice models).

Error kernels with skew-normal, t, or skew-t distributions have appropriate
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statistical properties for such joint structural modeling, but the use of these flexi-

ble distributions in multinomial choice models is cumbersome due to open-form

choice probability expressions as well as noted inference issues.3

The skew-normal distribution has been used at a few instances in the mixed

MNP model but not to specify the error kernel, rather to model unobserved prefer-

ence heterogeneity (random parameter choice models as in Bhat and Sidharthan,

2012). Since random taste variations and error term heterogeneity are confounded

(Brownstone and Train, 1998), the mixed MNP specification can be viewed as an

indirect utility with a non-random index function and a skew-normal error term.

Bhat et al. (2015) and Bhat et al. (2017) have also used the skew-normal distribu-

tion to account for non-normality in latent constructs within an integrated choice

and latent variable model (Ben-Akiva et al., 2002) and in the error kernel of an

ordered response model, respectively.

However, we are not aware of the application of t- or skew-t-distributed er-

ror kernels in multinomial choice models, which are commonly used in binary,

linear mixed or multilevel, and censored linear regressions (Pinheiro et al., 2001;

Liu, 2004; Koenker and Yoon, 2009; Marchenko and Genton, 2012; Wang et al.,

2018) due to their ability to model fat-tailed distributions. This study particularly

contributes to the literature by first illustrating the statistical and behavioral im-

plications of using a fat-tailed error kernel in multinomial-response models and

3Models with skew-normal and skew-t error kernel can encounter inference problems due
to eventual singularity of the Fisher information matrix (when direct parameterization is used)
and violation of asymptotic theory for centered parameterization (see Pewsey, 2000; Azzalini and
Arellano-Valle, 2013, for a discussion on these issues).
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proposing the first multinomial choice model with the t-distributed error kernel.4

4.3 Methodology

In this section, we first discuss separate models for multiple-continuous and

multiple-discrete responses with t-distributed error kernels. We then combine

these models to derive a generalized continuous-multinomial response model

with a t-distributed error kernel (GCM-t) and outline steps for implementation of

its full-information maximum likelihood estimator.5 In the proposed model for-

mulation, we do not consider network, social, or spatial effects and therefore the

utility of an individual is independent of other individuals in the sample. Thus,

without loss of generality, we derive the model and estimation procedure for a

single individual.

4.3.1 Continuous variable model

Consider a standard linear regression setup: yh = γ>h Xh +ξh, where h is the index of

a continuous outcome h = {1, 2, . . . ,H}, yh and ξh are the corresponding dependent

variable and a t-distributed error term with DOF δ, and γh and Xh are respectively

4The skew-t kernel could additionally account for asymmetry of the error distribution, but we
do not consider it because inference in such models would have similar issues as we encounter in
models with skew-normal kernel (Azzalini and Arellano-Valle, 2013).

5Since multinomial robit (MNR) model is a special case of the GCM-t model, we do not explic-
itly discuss its estimator.
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(s × 1) vectors of coefficients and exogenous regressors.

Rewriting the regression equation in matrix form leads to: y = diag(γX>) +

ξ, where (y)H×1 = [y1, y2, . . . , yH]> is a vector of continuous outcomes and

(ξ)H×1 = [ξ1, ξ2, . . . , ξH]> is a t-distributed error vector with DOF δ, and (γ)H×s =[
γ1,γ2, . . . ,γH

]> and (X)H×s = [X1, X2, . . . , XH]> are matrices of coefficients and ex-

ogenous variables. Note that y ∼ MVTH

[
diag(γX>),Ξ, δ

]
where Ξ is the variance-

covariance matrix of ξ.

We consider the same DOF across all elements of the error vector because the

exact distribution of linear or non-linear combinations of two t-distributed ran-

dom variables with arbitrary DOF values is not known (Ahsanullah et al., 2014).

Jones (2002) allows marginal distributions to have an arbitrary DOF in the case

of a bivariate t-distributed random variable, but its extension to the multivariate

case is not straightforward.

4.3.2 Choice model

Let i be the index for a nominal outcome i ∈ {1, 2, . . . , I}, and k be the index of

alternatives in each nominal outcome k ∈ {1, 2, . . . , iK}. Then, we can write the

indirect utility of alternative k in the ith nominal variable as Uik = β>ik zik + εik, where

zik and βik are (g × 1) vectors of exogenous variables and coefficients, and εik is a

t-distributed error term with DOF δ.
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If we define the total number of alternatives IK =
I∑

i=1
iK , the indirect util-

ity vector (U)IK×1 = [U1,U2, . . . ,UI]> where Ui =
[
Ui1,Ui2, . . . ,UiiK

]
, the coeffi-

cient matrix (β)IK×g =
[
β11,β12, . . . ,β11K , . . . ,βIIK

]>, the exogenuous variable matrix

(z)IK×g =
[
z11, z12, . . . , z11K , . . . , zIIK

]>, and the error vector (ε)IK×1 = [ε1, ε2, . . . , εI]>

where εi =
[
εi1, εi2, . . . , εiiK

]
, we can write the distribution of the indirect utility as

U ∼MVT(IK×IK )

[
diag(βz>),Λ, δ

]
.

Since only differences in utility matter, the difference of error terms (ε) is

identifiable after fixing the scale of utility. In fact, we normalize the top diago-

nal element of the covariance matrix of error differences to 1 to fix scale of util-

ity. We create a transformation matrix (D) to convert the normalized variance-

covariance of error differences (Λ(IK−1)×(IK−1)) into the undifferenced error variance-

covariance matrix (ΛIK×IK ) using Λ = DΛD>. We provide details of creating

the transformation matrix (D) and an illustration of this operatoor in appendix

C.1.1 (cf. Bhat and Sidharthan, 2012). The indirect utility can thus be written as

U ∼MVTIK

[
diag(βz>), DΛD>, δ

]
.6

4.3.3 Joint Model Specification

In order to write a joint model of the continuous and nominal variable, we

define YU =

 y
U

. Thus, the distribution of YU ∼ MVTH+IK [B,Σ, δ] where

6The matrixΛ can be block-diagonal and still the dependencies across alternatives and nominal
variables are parsimoniously generated by a single DOF parameter.
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B =

 diag(γX>)
diag(βz>)

 and Σ =

 Ξ Cov(ξ, ε)
Cov(ε, ξ) Λ

. If Σ is the normalized (up

to scale) covariance matrix of the joint differenced error

 ξ
ε

, which is identified,

the undifferenced full variance-covariance matrix (Σ) can be obtained from Σ us-

ing the modified transformation matrix Dm as follows: Σ = DmΣD>m. Appendix

C.1.2 provides the details of creating Dm, together with an example.

4.3.4 Joint Model Estimation

Similar to MNP estimation, we work with utility differences using the chosen

alternative as base. To perform this operation, we construct the utility difference

operator M of size (H + IK − I) × (H + IK) using the algorithm given in appendix

C.1.3. We transform the original mean and the variance-covariance matrix using

M, and thus derive the distribution of the joint variable ỸU in utility-differences

(U) space. We obtain ỸU ∼MVTH+IK−I

(
B̃, Σ̃, δ

)
, where B̃ = MB and Σ̃ = MΣM>.

Consider the partition of B̃ and Σ̃ into the continuous and choice (dis-

crete) model (in utility differences) as follows: B̃ =

 B̃y

B̃U


(H+IK−I)×1

and Σ̃ = Σ̃y Σ̃y,U

Σ̃U,y Σ̃U


(H+IK−I)×(H+IK−I)

.

The conditional distribution of the utility difference vector is also t-distributed
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(Ding, 2016):

U|y ∼MVTIK−I

(
←→
B U,
←→
Σ U,
←→
δ

)
, (4.1)

where

←→
B U = B̃U + Σ̃>

y,U

(
Σ̃y

)−1
(y − B̃y)

←→
Σ U =

[
δ + α

δ + H

] (
Σ̃U − Σ̃

>

y,U

(
Σ̃y

)−1
Σ̃y,U

)
←→
δ = δ + H

α = (y − B̃y)>
(
Σ̃y

)−1
(y − B̃y)

Thus, the joint likelihood can be written as :

L(θ) =Pr(y)Pr(1k = 1m, 2k = 2m, . . . , Ik = Im|y)

= fH

(
y|B̃y, Σ̃y, δ

) 
←→
B U∫
−∞

f(IK−I)

(
r|
←→
B U,
←→
Σ U,
←→
δ

)
dr


(4.2)

where im is the chosen alternative corresponding to the ith nominal variable, fH is

the probability density function of the H-variate t-distribution, and θ is a vector of

identified parameters {γ,β,vec(Σ)}.7

In order to ensure positive definiteness of the normalized covariance matrix of

error difference (Σ), we work with its Cholesky decomposition in estimation. We

7Note that Σ, the normalized variance-covariance matrix of the joint differenced error, is identi-
fied and other matrices (Σ and Σ̃) are derived from it using Dm and M matrices. Moreover, vec(Σ)
vectorizes the unique element of a matrix Σ.
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effectively consider the normalized Cholesky factorization such that the top diag-

onal element of the error differenced covariance matrix of every nominal variable

(Λi) is fixed to 1. Details of normalization can be found in appendix C.1.4.

The full-information maximum likelihood estimator requires maximization of

the joint likelihood function. All numerical maximization routines require to eval-

uate the likelihood function at a given parameter vector, which we illustrate in

Algorithm 4. This computation involves evaluation of a H−dimensional multi-

variate-t-probability-density (MVTPD) function and a (IK − I)−dimensional multi-

variate-t-cumulative-density (MVTCD) function. The MVTCD function does not

have a closed-form expression and thus requires the use of simulation-aided in-

ference. We use a separation-of-variables (SoV) approach to compute the MVTCD

function (Genz and Bretz, 1999), which is detailed in section 4.3.4. Similar to other

simulation-based function evaluation procedures, the SOV approach also suffers

from the course of dimensionality coming from the increase in integral dimension-

ality. As a result, simulation-based evaluation of the function not only loses accu-

racy, but computation time also becomes unmanageable (Bhat, 2003; Craig, 2008).

To reduce the dimension of this integration, we adopt the composite marginal

likelihood (CML) method, which we briefly discuss in section 4.3.4.
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Algorithm 4: An algorithm to compute the loglikelihood of GCM-t model
Input data: {y, X, z,H, I,N}, where N is the number of decision-makers;
Input parameters: θ =

{
γ,β,vec

(
LΣ

)}
, where LΣ is the lower triangular Cholesky matrix of Σ;

Step 1: Reparametrize LΣ using the procedure given in appendix C.1.4 and compute Σ;
Step 2: Create modified transformation matrix Dm using the procedure provided in appendix C.1.2;
Step 3: Compute undifferenced error variance-covariance matrix: Σ = DmΣD>m;

Step 4: Compute mean of the joint dependent variable YU for the sample: B =

[
diag(γX>)
diag(βz>)

]
;

Step 5:
for (n in 1 to N) do

Construct utility difference generator M using the algorithm 6 in appendix C.1.3;
Compute mean B̃ = MB and covariance matrix Σ̃ = MΣM> in the utility difference space;
Obtain the conditional distribution of the utility difference (U|y) using equation 4.1;
Compute the likelihood for the decision-maker n using equation 4.2:

• Compute PDF for the continuous variable: Ln
cont = fH

(
y|B̃y, Σ̃y, δ

)
;

• Use CML approach (section 4.3.4) to decompose the CDF: Ln
nom =

←→
B U∫
−∞

f(IK−I)

(
r|
←→
B U,
←→
Σ U,
←→
δ

)
dr ;

• Compute the decomposed CDF using MVTCD function simulator (section 4.3.4);

end

Step 6: Compute the sample loglikelihood: LL =
N∑

n=1
log

[
Ln

cont · L
n
nom

]
;
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Separation-of-Variables Approach to evaluate MVTCD Function

The underlined concept of this simulator is similar to the GHK simulator for the

MVNCD function (Genz, 1992; Hajivassiliou et al., 1996). In the SOV approach, a

p−dimensional integral of the MVTCD function is decomposed into (p − 1) unidi-

mensional integrals using the Cholesky decomposition of the covariance matrix.

These independent unidimensional integrals are sequentially evaluated based on

the realization of all previous integrals. The approach presented below is adopted

from Genz and Bretz (1999).

We present this approach for computing the area under the curve8 of a prob-

ability density function of the p-dimensional t-distributed random variable (r ∼

MVTp(0,Ω, δ))9 between a and b:

Tp(a, b,Ω, δ) =

b∫
a

f (r|Ω, δ)dr =
Γ
(
δ+p

2

)
Γ
(
δ
2

)
(πδ)

p
2 |Ω|

1
2

b∫
a

(
1 +

r>Ω−1r
δ

)− (δ+p)
2

dr (4.3)

Next, Ω = LΩL>
Ω

, where LΩ is the lower triangular Cholesky factor. Then,

by change of variable, r = LΩw and r>Ω−1r = w>w, dr = |LΩ|dw, dr = |Ω|
1
2 . Let

8The area under the probability density function between a and b is the same as the CDF eval-
uated at point b when a is −∞.

9We set location parameter to 0 without loss of generality because if g ∼ MVTp(µ,Ω, δ) and
r ∼MVTp(0,Ω, δ), then g = r + µ.
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κ
p
δ =

Γ
(
δ+p

2

)
Γ( δ2 )(πδ)

p
2

such that equation 4.3 can be rewritten as:

Tp(a, b,Ω, δ) = κ
p
δ

∫
a≤LΩw≤b

(
1 +

w>w
δ

)− (δ+p)
2

dw (4.4)

where a ≤ LΩw ≤ b is the same as


a1

a2
...

ap


≤


L11 0 0 0
L21 L22 0 0
...

...
. . . 0

Lp1 Lp2 Lp3 Lpp


≤


b1

b2
...

bp


Let ai =

ai−
i−1∑
j=1

Li jwi


Lii

and bi =

bi−
i−1∑
j=1

Li jwi


Lii

. Also note that

(
1 +

w>w
δ

)
=

(
1 +

w2
1

δ

) (
1 +

w2
2

δ + w2
1

)
. . .

1 +
w2

p

δ +
p−1∑
j=1

w2
j

 (4.5)

Thus, equation 4.4 can be rewritten as :

Tp(a, b,Ω, δ) = κ
p
δ

b1∫
a1

(
1 +

w2
1

δ

)− (δ+p)
2

b2∫
a2

(
1 +

w2
2

δ + w2
1

)− (δ+p)
2

· · ·

bp∫
ap

1 +
w2

p

δ +
p−1∑
j=1

w2
j


−

(δ+p)
2

dw

(4.6)

Consider wi = ui

√
δ+

i−1∑
j=1

w2
j

δ+i−1 . We can rewrite equation 4.6 by substituting wi as
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follows:

Tp(a, b,Ω, δ) = κ
p
δ

√(
δ

δ + 1
δ

δ + 2
. . .

δ

δ + p − 1

)
. . .

b̂1∫
â1

(
1 +

u2
1

δ

)− (δ+1)
2

b̂2∫
â2

(
1 +

u2
2

δ + 2 − 1

)− (δ+2)
2

· · ·

b̂p∫
âp

1 +
u2

p

δ + p − 1

−
(δ+p)

2

du

(4.7)

where âi = ai

√
δ+i−1

δ+
i−1∑
j=1

w2
j

and b̂i = bi

√
δ+i−1

δ+
i−1∑
j=1

w2
j

. Further, equation 4.7 can be rewritten

as

Tp(a, b,Ω, δ) =

κ1
δ+1−1

b̂1∫
â1

(
1 +

u2
1

δ

)− (δ+1)
2

du1


κ1
δ+2−1

b̂2∫
â2

(
1 +

u2
2

δ + 2 − 1

)− (δ+2)
2

du1


. . .

κ1
δ+p−1

b̂p∫
âp

1 +
u2

p

δ + p − 1

−
(δ+p)

2

dup


(4.8)

The derivation of equation 4.8 from equation 4.6 is illustrated for a bivariate

t-cumulative distribution function (p = 2) in appendix C.2. Next, we substitute

ui = t−1
δ+i−1(zi) where tδ+i−1(zi) = κ1

δ+i−1

zi∫
−∞

(
1 + s2

δ+i−1

)− δ+i
2 ds is the cumulative density

function (CDF) of the univeriate t-distribution with DOF δ + i − 1, and thus dzi =

k1
δ+i−1

[
1 +

u2
i

δ+i−1

]− δ+i
2

dui.
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Finally, equation 4.8 can thus be rewritten as:

Tp(a, b,Ω, δ) =

e1∫
d1

e2∫
d2

e3∫
d3

· · ·

ep∫
dp

dz1dz2dz3 . . . dzp (4.9)

where di and ei are CDF of t-distributed random variable with DOF δ + i − 1 at

points âi and b̂i, respectively. After the change of variables zi = di + φi(ei − di),

equation 4.9 becomes:

Tp(a, b,Ω, δ) = (e1−d1)

1∫
0

(e2−d2)· · ·

1∫
0

(ep−dp)

1∫
0

dφ =

1∫
0

1∫
0

1∫
0

· · ·

1∫
0︸            ︷︷            ︸

(p−1)

f (φ)dφ (4.10)

which is an integral of f (φ) =
p∏

i=1
(ei − di) over the (p − 1)-dimensional unit hyper-

cube. This integral can be evaluated using different Quasi-Monte-Carlo or ran-

domized lattice rule methods.

Composite Marginal Likelihood Approach

Computation of the joint likelihood function in equation 4.2 requires the evalua-

tion of a high-dimensional integral. The dimension of this integral grows with the

number of alternatives per nominal variable and also with the number of nominal

variables. For example, if there are ten nominal variables, each with six alterna-

tives, the integral would be fifty-dimensional.

Rather than directly evaluating such high-dimensional integrals, we use the

CML approach (also known as paired-likelihood approach) for simplification. The
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CML method breaks down the joint likelihood function into multiple pairs, de-

creasing the dimension of the integral. More specifically, if choices made by an

individual across all nominal variables is an event, this event is represented as

pairwise observations in CML:

LCML(θ) = fH

(
y|B̃y, Σ̃y, δ

)  I−1∏
i=1

I∏
j=i+1

Pr(ik = im, jk = jm|y)

 (4.11)

where im represents the chosen alternative for the ith nominal variable. In the CML

expression above, the first term is the same as the MVTPD function, but the second

term corresponds to the pairing between nominal variables with the highest di-

mension of integration being equal to 2[max(iK∀i)]. Thus, by employing the CML

approach, the dimension of integration in the above example can be reduced to

ten from fifty. Of course, the CML approach is only applicable if there are three or

more nominal variables.

A comprehensive discussion on the CML approach is outside the scope of this

chapter. Readers can refer to Varin and Vidoni (2005) and Varin et al. (2011) for a

detailed discussion on the CML approach and Bhat (2014) for its derivation and

application in the context of discrete choice models. Apart from well-established

asymptotic properties (Bhat, 2014), Bhat and co-authors have tested finite sam-

ple properties of CML by applying it to complex econometric models and have

observed satisfactory results (Bhat and Sidharthan, 2012; Bhat et al., 2015, 2017).
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4.4 Implications of using GCM-t in practice

4.4.1 Class imbalance

Class imbalance, a very high market share of few alternatives relative to others,

is often encountered in choice modeling applications such as residential location

choice, travel mode choice, and credit card ownership. We take an example of

binary-response data to illustrate the importance of using the robit link in datasets

with class imbalance. Consider a scenario where a commuter chooses an alterna-

tive between car (C) and bicycle (B). We use a data generating process with a

much higher share of car than bicycle, which is reflected in the index functions:

VC = 0.5HI − 0.2S and VB = −1 − 0.9HI + 0.5S , where HI and S are indicators for

high income and student commuters, respectively.

In these class imbalance situations, accurate prediction of choices is challeng-

ing. A good model should ideally predict a higher probability of choosing bi-

cycle (the alternative with a very low market share) when a commuter actually

chooses bicycle. We compare predicted choice probabilities for all four demo-

graphic groups under normally-distributed and t-distributed error kernels with

varying DOFs (Table 4.1). The predicted probabilities of choosing bicycle by a

high-income non-student commuter using probit and robit (with 0.1 DOF) links

are 0.01 and 0.38, respectively. These values are 0.38 and 0.46 for a low-income

student commuter. Clearly, improvement in the predicted probability of bicycle
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using robit is higher when the difference between the index function values of the

alternatives is higher.10

In sum, the flat-tailed nature of the t-distributed kernel is able to better predict

the probability of choosing bicycle for all demographic groups, but the extent of

the improvement over probit is higher if the difference in index values lies more

toward the tails of the error distribution. Thus, t-distributed error kernels increase

the likelihood of predicting correct travel mode assignment in such imbalanced

datasets.

4.4.2 Behavioral implications

Intuitively, decision rules can be viewed as a mapping from attributes of alter-

natives to observed choices, which is governed by a latent construct. The latent

construct includes an index function (or deterministic utility) and an idiosyncratic

error term. Adoption of different decision rules manifests into different latent con-

structs and, thus, different mappings. Most of the previous studies have modeled

different decision rules by modifying the index function. In fact, it turns out that

changing the linear index function to non-linear functions in the latent construct

of the fully-compensatory RUM-based model can translate it into a model with

non-compensatory decision rules (Swait, 2001; Elrod et al., 2004; Martínez et al.,

10The difference between the index function values of alternatives is the highest for a high-
income non-student commuter and is the lowest for a low-income student commuter.
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2009).11

We argue that a variation in DOF of the t-distributed error kernel across

decision-makers provides a flexible way to model “decision uncertainty" – a de-

gree of (un)certainty that decision-makers hold in their choices relative to the vari-

ation in the indirect utility of any alternative – without modifying the index func-

tion in the latent construct. We illustrate this choice behavior using a plot of the

choice probability vs. the utility at different DOF in a binary choice scenario (see

Figure 4.1). Since the relationship between the choice probability and utility is

steeper for the respondents with a higher DOF, choice of these decision-makers

is more sensitive to a variation in utility, but in a narrower range. More specifi-

cally, decision uncertainty of the respondents with the DOF of 10 is much larger as

compared to those with the DOF of 0.1.

In discrete choice experiments, decision uncertainty can depend on the familiar-

ity and experience of the decision-maker about the situation encountered during

the experiment, among many other factors. Decision-makers belonging to a spe-

cific demographic group can be just more certain about their choices than others.

Such choice behaviors cannot be modeled using standard logit and probit links,

even when accounting for preference heterogeneity. Also, neglecting decision un-

certainty results into underestimation of welfare measures (Dekker et al., 2016). A

few studies have quantified the decision uncertainty by asking follow-up questions

11Whereas the decision-maker is assumed to trade all attributes of alternatives and to choose
an alternative with the maximum indirect utility in the compensatory RUM framework, non-
compensatory rules allow the decision-maker to choose or reject an alternative based on the value
of even a single attribute (Schoemaker, 2013).
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after each choice task and incorporating these self-reported responses as explana-

tory variables or in other structural forms (Lundhede et al., 2009; Olsen et al., 2011;

Beck et al., 2013; Börger, 2016).

What we propose is to capture individual-specific decision uncertainty by pa-

rameterizing the DOF of the error kernel as a function of characeteristics of the

decision maker. Since the DOF of each individual is obtained as a byproduct of

estimation, GCM-t implicitly captures decision-uncertainty behavior without im-

posing additional econometric structure and also reduces the cognitive burden of

respondents by avoiding the need of asking additional questions.

Figure 4.1: Cumulative density function of t- and normally-distributed random variables.
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Table 4.1: Class-imbalance example under Probit and t-distributed error kernel

Demographic profile

t-distributed kernel
Probit kernel

DOF = 0.1 DOF = 0.5 DOF = 1.0
P(car) P(bicycle) P(car) P(bicycle) P(car) P(bicycle) P(car) P(bicycle)

High-income and non-student 0.62 0.38 0.80 0.20 0.88 0.12 0.99 0.01
High-income and student 0.60 0.40 0.76 0.24 0.83 0.17 0.96 0.04
Low-income and non-student 0.58 0.42 0.70 0.30 0.75 0.25 0.84 0.16
Low-income and student 0.54 0.46 0.58 0.42 0.59 0.41 0.62 0.38
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4.5 Monte Carlo study and results

Since this is the first study to use a t-distributed error kernel in multinomial re-

sponse models, we conduct a simulation study to numerically assess the statistical

properties (e.g., recovery of true parameters) of the maximum likelihood estima-

tor of the GCM-t model. In another simulation study, we compare the perfor-

mances of GCM-t and GCM-N models under thick- and thin-tailed error distribu-

tions and highlight the consequences of misspecified error kernels.

The context of our simulation study is joint modeling of the commute distance

and residential location choice, i.e. integrated land-use transportation modeling.

For residential location, we consider a nominal variable with five population-

density-based alternatives: 0 – 99, 100-499, 500 – 1499, 1500 – 1999 and 2000 or

more households/square mile. The considered joint model is shown in equation

4.12.

To generate all three exogenous indicators, we take a draw from a standard

uniform distribution. If the sampled value is higher than 0.5, the indicator takes

a value 1; otherwise, it takes a value 0. That is, for a certain household if the sam-

pled value is 0.64, 0.32, and 0.75, then the generated household is a high-income

household with no children, but with a bachelor’s degree holder. All the assumed

parameter values and their directions are intuitive and consistent with the liter-

ature. For example, a high-income household with children prefers to live in a

low-density area (Paleti et al., 2013). Similarly, assuming that the commute dis-
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tance precedes the choice of residential location (Clark et al., 2003; Rashidi et al.,

2012), the likelihood of living in high-density areas decreases with the increase in

the commute distance.

Equation 4.13 shows the considered covariance matrix (Σ) of the joint-

differenced error, which is normalized up to scale. After taking a draw from this

covariance matrix, response variables are generated. Since the commute distance

has a structural relationship with the choice of residential location, it is first ob-

tained using the continuous variable model and is then used as an explanatory

variable in the choice model to determine the residential location of a household.

YU =

 y
U

 =



Commute distance

Density 2000+
Density 0-99

Density 100-499
Density 500-1499
Density 1500-2000



=



1.00 0.50 0.75 −0.50 0.00
0.00 0.00 0.00 0.00 0.00
−1.50 1.00 0.90 0.00 1.00
−1.30 0.90 0.80 0.00 0.90
−1.20 0.80 0.70 0.00 0.80
−1.00 0.70 0.60 0.00 0.70





Constant
High-income household
Household with children

Household with a bachelor’s degree holder
Commute distance


(4.12)
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Σ =



1.50 0.30 0.40 0.60 0.50
0.30 1.00 0.50 0.50 0.50
0.40 0.50 1.10 0.50 0.50
0.60 0.50 0.50 1.20 0.50
0.50 0.50 0.50 0.50 1.30


(4.13)

We initially estimated all elements of the covariance matrix, but such flexi-

ble specification resulted in convergence issues – a few elements of the matrix

converged to values near zero, leading to a non-positive-definite covariance ma-

trix. This empirical identification concern is commonly encountered, forcing re-

searchers to adopt a diagonal error-covariance matrix. Such concerns are gener-

ally not reported, but we are aware of only handful of studies with a non-diagonal

error-covariance structure in multinomial choice models with open-form expres-

sions of choice probabilities (e.g., Paleti et al., 2013; Bhat, 2015).

In the simulation study, we estimate diagonal elements of the error-covariance

matrix of the choice model and the elements representing the correlation between

continuous and multinomial parts of the joint model. The estimated elements of

the covariance matrix are in bold in equation 4.13. We note that the diagonal error-

covariance in a choice model with a t-distributed error kernel does not translate

into independence across alternatives as long as the common DOF is finite.

137



www.manaraa.com

4.5.1 Statistical properties of GCM-t estimator

To test the statistical properties of the GCM-t model, we consider the above DGP

with DOF(δ) 1 (DGP-I) and 12 (DGP-II). Whereas a DOF value of 1 represents a

distribution far from normal with flat probability curves and long thick tails, a

value of 12 mimics the normal error kernel with steep probability curves and thin

tails. In both DGPs, we take a sufficiently large sample of 3000 individuals to cir-

cumvent the effect of sample size on parameter recovery. Further, we generate 150

resamples for each DGP to ensure that statistical properties are not affected by the

choice of the number of repetitions. To evaluate the MVTCD function, we use 200

Halton draws in the earlier discussed separation-of-variables approach. We have

also tested sensitivity of parameter estimates and standard errors by increasing

the number of draws from 200 to 500 for a few resamples, but have not observed

any improvement in results.12 We compute the following performance measures

across resamples:

Mean estimated value (MEV): Average value of the estimated parameter across

all resamples.

Mean absolute bias (MAB): Average bias (|true value-MEV|) of the parameter

estimates.

Absolute percentage bias (APB): |MAB/true value|×100.

12200 Halton draws have proven to be sufficient to estimate up to eight-dimensional integrals in
the GHK simulator for the MNP estimation (Patil et al., 2017).
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Finite sample standard error (FSSE): Standard deviation of the parameter esti-

mates across all resamples.

Asymptotic standard error (ASE): Average of standard error values across all re-

samples, which are obtained using the sandwich estimator. For the sufficient esti-

mator, FSSE and ASE values are close to each other.

Coverage probability (CP): Proportion of times the 95% confidence interval con-

tains the true value.

Power of the test: Proportion of times the null hypothesis is rejected (i.e., |t-

statistic| is greater than 1.96).

A lower APB, a ratio of ASE and FSSE closer to 1, higher CP, and higher power are

desirable for a better statistical performance of the estimator (Koehler et al., 2009).

The resulting performance measures for DGP-I and DGP-II are summarized

in Tables 4.2 and 4.3, respectively. We first highlight important insights related

to parameter recovery (i.e., bias). The mean APB values of the parameter vector

(γ) in the continuous variable model are 1.54% and 0.46% for DGP-I and DGP-II,

respectively. These results not only indicate excellent recovery of γ vector, but

also suggest improvement in its recovery with the increase in the DOF. However,

parameters (β) associated with the nominal response model appear to be rather

difficult to recover accurately irrespective of the DOF. The mean APB values of

the β vector are 14.79% and 16.90% for DGP-I and DGP-II, respectively. These val-

ues for the covariance matrix (Σ) are 14.16% and 11.37%, respectively, suggesting

that the recovery of the error-covariance matrix is better for the DGP with a higher
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DOF value. The bias in parameter estimates is substantially higher than the ones

obtained when the specification is kept the same but the normally-distributed er-

ror replaces the t-distributed error kernel in the DGP and in the estimation. More

specifically, the mean APB values of β and Σ in the corresponding GCM-N model

are 4.88% and 7.30%, respectively.13 This comparison suggests that allowing for

flexibility in the parametric distribution of the error kernel beyond mean and vari-

ance parameters might lead to a deterioration in the recovery of model parame-

ters. Bhat and Sidharthan (2012) also observed a higher bias in the parameter

estimates of the mixed multinomial choice model with a skew-normal distribu-

tion than those of the corresponding mixed MNP model. The recovery of the

DOF parameter (δ) in both cases is good, with APB values of 8.24% and 12.37%,

respectively.

We now discuss performance measures related to model inference – ratio of

asymptotic standard error and finite sample standard error (ASE/FSSE), cover-

age probability (CP), and power. ASE/FSEE values of all parameters {γ,β,Σ, δ}

are close to 1 for both DGPs, suggesting that the proposed estimator is sufficient.

However, consistent with the findings of the parameter recovery, mean values of

these ratios are much closer to 1 for DGP-II {0.99, 0.98, 0.95, 0.98} as compared to

those of the DGP-I {1.06, 0.81, 0.76, 1.10}.

13We have also conducted a Monte Carlo study for the corresponding GCM-N model. We used
the GHK simulator with 200 Halton to evaluate the MVNCD function. The detailed results are
available upon request.
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Whereas the mean CP values of the γ vector are close to 0.95 for both DGPs,

these values are much lower for other parameters. Particularly, the mean CP value

of β vector is 0.78 for DGPs with DOF 1 and 12, and these numbers are 0.83 and

0.90 for the error-covariance matrix Σ.14 Similarly, as expected, the power value of

all elements of the γ vector is 1 for both DGPs. The estimator also provides very

low variance in power values across the vector βwith the mean values of 0.97 and

0.98 for both DGPs. However, the power variance across error-covariance matrix

(Σ) slightly increases with the increase in DOF from 1 to 12, but the mean power

value decreases from 0.80 to 0.72. Importantly, the power value of all diagonal

elements of Σ is 1 across both DGPs, but it is relatively lower for the off-diagonal

elements.

4.5.2 Effect of modeling fat-tailed data with normal distribution

We conduct another Monte Carlo study to understand the consequences of as-

suming a normally-distributed error kernel when the actual DGP has a fat-tailed

error distribution. To accomplish this, we adopt the same model specification as

described in the first Monte Carlo study, but consider a DGP with the DOF of 2

to represent a fat-tailed distribution. We generate 50 resamples using this DGP,

and estimate the GCM-t model with the fixed DOF of 2 (correct model specifi-

cation) and the GCM-t model with the fixed DOF of 300 (which is equivalent to

14CP of the DOF parameter (δ) in DGP-I is 0.43 (see table 4.2). Even if the estimated DOF is close
to the true DOF (low APB), such low CP occurs due to low standard errors.
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the GCM-N model) for each resample. To benchmark this analysis, we further

generate 50 resamples with a thin-tailed error distribution (DOF value of 12) and

estimate GCM-t with DOF values of 12 and 300. The estimation results for DGPs

with DOF values of 2 and 12 are provided in Tables 4.4 and 4.5, respectively.

We obtain several insights from this second simulation study. First, modeling

thick/heavy-tailed data (DOF <= 7) with a normally-distributed error kernel can

introduce a large bias in the parameter estimates. The mean APB value (across all

parameters) of the GCM-t model with the fixed DOF of 300 (equivalent to GCM-N

model) increases from 14.46% to 88.94% with the decrease in DOF of the DGP from

12 to 2. These values are 11.36% and 11.59% for the GCM-t model with the correct

error specification. Second, we also observe a high degree of deterioration in the

goodness of fit due to error misspecification. Under the fat-tailed DGP (DOF=2),

the loglikelihood value of the GCM-t model with the DOF 2 is 505 points higher

than that of the GCM model with DOF of 300 (Table 4.4). This difference in the

loglikelihood values at convergence is just around 17 points under the DGP with

the DOF of 12.

We also replicate this analysis for the true DGP with DOF=1. When we es-

timate GCM-t with DOF=300 (i.e., equivalent GCM-N model) on resamples of

this DGP, some elements of the error-covariance matrix explode and also result

into the wrong direction of the parameter estimates, even when only diagonal

elements are estimated. This behavior might be a manifestation of the GCM-N

model’s attempt to fit the index function and then broaden the support of the
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normal distribution around the fitted index function to put the probability mass

on tails to mimic the underlying DGP. This phenomenon can potentially explain

the common convergence concerns faced by researchers in estimating the error-

covariance matrix of probit-based choice models. Thus, problems in recovering

the error-covariance matrix can indicate the possibility of a misspecified error ker-

nel (i.e. the underlying assumption of normally distributed error kernel might be

incorrect, and a t-distributed error kernel may perform better).

4.6 Empirical study

We now present statistical and behavioral insights from comparison of the GCM-

t and GCM-N models in an empirical setting that jointly models individual’s

vehicle-miles-traveled (VMT) and stated vehicle purchase preferences. We also

illustrate how decision-uncertainty behavior of different demographic groups can

be captured by the GCM-t model.

4.6.1 Data description

We conducted a stated preference survey of 1542 individuals in 2018 to examine

the policies related to on-street parking with charging facilities for battery electric

vehicles (EV) in the city of Philadelphia, Pennsylvania. Philadelphia has substan-

tial variation in residents’ socioeconomic attributes, driving patterns, and neigh-
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borhood characteristics. The city also has the kinds of short trips and stop-and-go

traffic that are well-suited to EVs. Charging locations and neighborhood parking,

however, remain a substantial barrier to the adoption of EVs. In 2017, the City

Council put a moratorium on a ten-year old policy to permit on-street EV charg-

ing stations and parking spaces after installing fewer than one hundred of them

throughout the city.

The main goal of the survey was to better understand preferences for adop-

tion of electric vehicles by Philadelphians, within the context of availability of

dedicated public parking with charging stations. We thus asked survey respon-

dents to imagine themselves in a situation where they had to buy a new vehicle,

had settled on a make and model, and must make a choice about whether to buy

an electric version, gasoline version, or no car replacement (opt-out option) given

a set of vehicle attributes. In a discrete choice experiment (DCE), each survey

participant responded to purchase preferences in eight choice situations based on

varying purchase prices, operating costs, electric vehicle performance in terms of

driving range, and EV parking characteristics (monthly cost for access, time to

recharge the battery as a proxy for type of the charging station, average time to

find a parking spot as a proxy for availability, and on/off-street location). Table

4.6 presents a sample of a choice situation.

The experimental shares of gasoline vehicles, electric vehicles, and the opt-

out alternative in the sample are 64%, 32%, and 4%, respectively. The sample

summary statistics of key socio-demographic and built-environment attributes

144



www.manaraa.com

are reported in Table 4.7. Comparing our survey sample to Census micro data

of persons over 17 in households with one or more cars, our respondents are sub-

stantially more likely to be female (70% vs 52%), white non-Hispanic (64% vs.

36%), younger (39 vs. 44 years old on average), and well-educated (61% vs. 34%

with a BA or higher). The income and housing type of respondents are generally

representative of Philadelphia’s adult population with cars and those who com-

mute to work by car. For example, 63% live in row homes and 20% live in multi-

unit buildings. Although, we had respondents from all Philadelphia Zip Codes,

respondents are disproportionately from predominantly white neighborhoods in

Northeast Philadelphia. In addition to the vehicle choice experiment, respondents

were also asked to report their annual household vehicle-miles-traveled (VMT). In

the empirical analysis, we jointly model the household’s annual VMT and choice

of vehicle as a function of socio-demographic, built-environment, and alternative-

specific attributes.

4.6.2 Results and discussion

Table 4.8 and 4.9 summarizes the results of GCM-t and GCM-N models, which we

discuss in the next subsections.
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Socio-demographic and built-environment factors

In this section, we discuss the relation of individual’s or household’s character-

istics with household’s annual VMT and vehicle purchase preferences. Several

demographic characteristics have a significant association with the household’s

VMT in both GCM-t and GCM-N models. The results indicate that married

households tend to have lower VMT as compared to unmarried households, ce-

teris paribus. This association can be a manifestation of the way different types

of households spend time on their activities. For example, whereas married (or

larger) households are likely to spend more time together at home in joint activ-

ities (Fang, 2008; Spissu et al., 2009), unmarried individuals may drive more fre-

quently for various leisure activities (e.g., going to a club, theater, or eating out)

besides commuting trips.

As expected, a household with a full-time working individual is likely to drive

more than those with part-time or non-workers (Lee and McDonald, 2003; Mc-

Quaid and Chen, 2012). Surprisingly, households in higher density Zip Codes

tend to drive more than those in lower density ones. This stands in sharp con-

trast with findings from recent meta-analyses (Ewing and Cervero, 2010; Stevens,

2017), as well as findings from the Philadelphia region more specifically (Klein

et al., 2018). The counter-intuitive finding may relate to our sample exclud-

ing non-drivers and drawing disproportionately from higher-educated, white,

women drivers in relatively dense neighborhoods of Northeast Philadelphia that

are somewhat far from Philadelphia’s major employment centers.

146



www.manaraa.com

We now discuss the factors determining the vehicle purchase preferences of

Philadelphia residents. We discuss the effect of socio-demographic attributes, fol-

lowed by built-environment variables. First, married households with children

are less inclined toward the purchase of EVs as compared to single individuals,

possibly due to the compact size of most current electric cars. Second, house-

holds with highly educated individuals (Masters or post-graduate degree) are

more likely to purchase electric vehicles as compared to less educated households,

perhaps as a sign of highly responsible behavior toward the planet. The literature

also confirms that highly educated individuals exhibit a higher degree of environ-

mental consciousness in terms of recycling, purchase of organic food, and aware-

ness about factors contributing to global warming (Fisher et al., 2012). Third, the

number of driving license holders has a positive association with the likelihood of

purchasing an EV. This is because households with more drivers can better per-

ceive the long-term benefits of buying fuel-efficient EVs as they are likely to have

higher VMT. Fourth, as expected, households with a higher number of vehicles

are less likely to purchase EVs. This is perhaps because car-lovers generally have

higher income and may view compact design and lower range of EVs as major

barriers to adoption (Jakobsson et al., 2016). Fifth, households who already own a

hybrid EV also exhibit a higher inclination toward purchasing an EV. Sixth, male

respondents are more likely to purchase EVs than females. Whereas most stud-

ies have found that females are more environmental-friendly than males, some

studies have also reported males to be greener than females (Fisher et al., 2012).

Seventh, the results indicate that Asians are more likely to purchase EVs followed
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by Caucasians. However, low-income groups with generally less access to op-

portunities (such as African-American and Hispanics) are more likely to stick to

traditional gasoline vehicles (Muehlegger and Rapson, 2018). Finally, as expected,

millennials are more likely to purchase EVs than baby boomers and generation-X

individuals. Millennials grew up in an era of prevalent information on topics such

as global warming and environmental sustainability, which perhaps made them

more inclined to adopt technology aimed at benefiting the environment.

Both built-environment (walk-score and population density of the neighbor-

hood) factors have expected and intuitive directions of effects on vehicle pur-

chase preferences. In terms of structural effects, households with a higher vehi-

cle mileage are less likely to purchase EVs, possibly due to limitations in driving

range or lower concern for the environment.

Willingness to pay estimates

We now analyze the results related to alternative-specific explanatory variables

in the choice model. The directions of effects are the same and intuitive in both

GCM-t and GCM-N models. Since the magnitude of marginal-utility parameters

is not directly comparable, we derive willingness to pay (WTP) for improving

various EV attributes.

Figure 4.2 presents the maximum WTP as premium for the purchase of an
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electric car with a marginal improvement in driving range.15 The results of GCM-

t and GCM-N models indicate that Philadelphians are willing to pay additional

$212 (GCM-t) and $153 (GCM-N) in purchase price, respectively, to increase driv-

ing range by one mile for a car offering 150 miles with a full battery. These WTP

estimates decrease to $64 (GCM-t) and $46 (GCM-N) when the driving range of

the car reaches 500 miles, which is close to parity with gasoline cars. Clearly,

GCM-t estimates are higher than those of GCM-N, but the difference decreases

with the increase in driving range.

Since monthly cost of having access to public parking with EV charging was an

experimental attributes, we also estimate WTP measures for characteristics of the

parking spot. For instance, we derive the WTP to reduce average search time for

available EV parking. According to GCM-t and GCM-N estimates, Philadelphians

are willing to add $6.7 and $4.6 in their monthly parking cost to reduce parking

search time by a minute, respectively. This conforms to findings that on-street

residential parking is frequently underpriced (Shoup, 2005). In a neighborhood

where drivers spend just five minutes searching for parking on average, the av-

erage stated willingness to pay to avoid that search time is eight to eleven times

higher than the price of a parking permit for a single vehicle.

WTP to reduce the EV charging time by an hour ranges from $96 (GCM-t) to

$60 (GCM-N). The higher WTP estimates of GCM-t are aligned with the finding

of the study by Dekker et al. (2016), who also observed an increase in WTP for

15Since driving range enters the utility specification logarithmically, the WTP estimates are non-
linear and decreases with the driving range.
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Figure 4.2: Willingness to pay to increase the driving range of an electric vehicle by a mile

flood risk reductions after controlling for the behavioral responses to decision un-

certainty in an integrated choice and latent variable model.

Finally, because vehicle purchase and parking costs happen at different times,

the annual subjective discount rate of parking cost is estimated at 10.7% (GCM-t)

and 9.3% (GCM-N), which is slightly above market interest rates in the automo-

tive industry.
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Behavioral Insights

We parameterize the DOF of the t-distributed error kernel as a function of demo-

graphics in GCM-t to capture decision-uncertainty behavior of decision-makers.

Table 4.10 presents the relation between the DOF and demographics in GCM-t,

which is used to obtain the DOF of each respondent. These results also provide

insights about decision uncertainty of different socio-demographic groups. For

example, the positive relationship between married males and the DOF indicates

that married males are likely to have a higher DOF, and thus are less certain about

their choices as compared to unmarried females.

We also compute elasticity estimates with respect to 1% and 25% reduction

in the EV parking price for both models. Tables 4.11 and 4.12 present elasticity

estimates for 1% and 25% reduction, respectively, for ten different ranges of the

DOF such that each bin contains 10% respondents of the sample.16 Whereas the

difference between elasticity estimates of GCM-t and GCM-N models are not ap-

parent for the 1% reduction, they are quite stark for the 25% reduction in parking

price (see Table 4.12). In general, the magnitude of elasticity estimates for gaso-

line and electric alternatives in the GCM-N model is higher (1.5 times, on average)

than that of the corresponding GCM-t model. Specifically, this ratio is higher for

respondents with lower DOF values. This supports the our earlier observation

that individuals with lower DOF are more certain about their choices and are less
16Note that there is no concept of DOF in the GCM-N model. To facilitate the comparison be-

tween GCM-t and GCM-N models, DOF ranges are obtained from the GCM-t model and then the
same set of individuals are used for respective calculations in the GCM-N models.
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sensitive to changes in the utility of alternatives.

Finally, we plot the change in the probability of choosing electric and gasoline

vehicles in GCM-t and GCM-N model as a function of the change in the utility

of electric vehicle in Figures 4.3 and 4.4, respectively. For illustration, we only

make plots for three DOF ranges. These plots offer many interesting insights.

First, plots for three DOF ranges in the GCM-N model are virtually the same.

Second, these change-in-probability plots become steeper with the increase in the

DOF in the GCM-t model, capturing the varied decision-uncertainty behavior in

the sample. Finally, curves for the lower DOFs are not asymptotic to the x-axis,

demonstrating a phenomenon that it is implausible to achieve 100% market share

for any alternative in spite of being far superior to other available options.

Prediction performance

The dataset used in this case study is a good example of class-imbalance as the opt-

out alternative has a very small sample share. This is an appropriate scenario to

compare the predicted probability of the chosen alternative in GCM-t and GCM-

N model. Table 4.12 presents the ratio of GCM-t and GCM-N choice probabilities

for a group of respondents with a varying range of DOF.

The probability ratios for two alternatives (Gasoline and Electric vehicle which

have 96% sample share in total) are close to 1 across all DOF ranges. However, the

average ratio of 1.15 for the opt-out option (4% sample share) confirms our earlier
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Figure 4.3: Probability of choosing electric vehicle due to change in utility of electric vehicle.

observation that GCM-t model is indeed better than a GCM-N model in modeling

such imbalanced datasets. These ratios for the opt-out option are significantly

higher than 1 in lower ranges of the DOF (≤ 3.79). This finding is aligned with

our discussion in subsection 4.4.1 on the ability of GCM-t to better predict the

preference for the low-share alternatives under fat-tailed error distributions.

Surprisingly, GCM-N outperforms GCM-t for DOF ranges 4.16-4.40 and 5.33-

9.32 with probability ratios 0.77 and 0.80, respectively. Since GCM-t can approx-

imate GCM-N with the higher DOF, we would not expect this pattern. We spec-

ulate that such anomalies might be a manifestation of the strict constraint to use
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Figure 4.4: Probability of choosing gasoline vehicle due to change in utility of electric vehicle.

the same DOF expression across all alternatives of the choice model and the con-

tinuous response model. Nonetheless, the superior performance of GCM-N over

GCM-t for certain DOF values can be leveraged by developing a latent class model

with two classes where classes differ based on the distributional assumptions on

the error kernel (i.e., t and normal). We discuss another flexible way to relax the

“same DOF” assumption in section 4.7.
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Model selection

We first compare the goodness-of-fit measures of GCM-t and GCM-N models. The

log-likelihood value at convergence of GCM-t is better than the corresponding

GCM-N model by 200 points (see Table 4.9). Further, the lower Bayesian informa-

tion criterion (BIC) value of GCM-t also suggests that the DGP of this empirical

study is better modeled using the GCM-t model (with 39 parameters) than the

GCM-N model (with 42 parameters).

Apart from these measures, we also compare the trace of the error-covariance

matrix of GCM-t and GCM-N to assess the amount of (un)explained variance in

these models (see Table 4.11). The trace values of the error-covariance matrix in

GCM-t and GCM-N models are 1.06 and 3.44, respectively. This result is as ex-

pected because parameterization of the DOF in GCM-t model enables it to explain

more variation in the DGP than the GCM-N model.

Piatek and Gensowski (2017) did a similar effort to reduce the unexplained

variance in the MNP model with latent factors. The authors split the error-

covariance matrix into two parts – the allocation (or factor loading) matrix which

can be specified to model a covariance structure across alternatives, and the id-

iosyncratic error matrix which captures the correlation in residual. The key idea

behind the allocation matrix is to allow the researcher to specify driving factors

behind the choice variation beyond the observables included in the determinis-

tic part of the utility. However, the allocation matrix is not straightforward to
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define in empirical studies and, beyond a mathematical inconvenience, is diffi-

cult to parametrize as a function of other variables. Thus, in contrast to splitting

the error-covariance matrix, parametrization of the DOF in the GCM-t model not

only offers insights about choice behavior but also provides a new parsimonious

specification to reduce the unexplained variance.

4.7 Conclusions and future work

In this study, we have proposed and applied for the first time a t-distributed er-

ror kernel within random-utility-maximization (RUM) multinomial choice mod-

els. We have not only discussed statistical advantages of using this t-distributed

kernel over a normally-distributed one in class-imbalance situations, but also

illustrated how the t-distributed error kernel can capture decision-uncertainty

behavior (i.e., how certain the decision-makers are about the choices that they

make). Furthermore, we have extended this model to a generalized continuous-

multinomial response model with a t-distributed error kernel (GCM-t). Using

the composite marginal likelihood method, separation-of-variables approach, and

properties of the t-distribution, we have derived the full-information maximum

likelihood estimator of the GCM-t model and tested its statistical properties in

a Monte Carlo study. Finally, we have compared the statistical performance of

GCM-t and GCM with normally-distributed error kernel (GCM-N) in a simula-

tion study, and validated behavioral hypotheses about the advantages of GCM-t
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over GCM-N in an empirical study related to the adoption of electric vehicles in

the city of Philadelphia.

The results of the simulation study indicate that GCM-t and GCM-N perform

equally well in terms of recovering model parameters, goodness-of-fit, and model

inference when the true error distribution is thin-tailed. However, GCM-t either

outperforms GCM-N by a significant margin or GCM-N may not even converge

in datasets with fat-tailed error distributions. In the case study about adoption

of electric vehicles, GCM-t is more accurate than GCM-N in estimating the choice

of the alternative with a small sample share. Moreover, accounting for decision-

uncertainty behavior in GCM-t manifests into lower elasticity estimates (relative

to those of GCM-N). These lower elasticity estimates of GCM-t, as well as the

evidence we found for underestimation in the GCM-N model of individual’s will-

ingness to pay to increase the driving range of electric vehicles and for reducing

the parking search time for a parking spot with charging are all relevant in the

context of planning policies for broader adoption of electric vehicles.

We now discuss key limitations of this study and possible research avenues to

overcome them in the future First, unlike GCM-N, incorporating random param-

eters with parametric heterogeneity distributions in GCM-t is possible, but not

straightforward because the resulting distribution – the sum of t-distributed ran-

dom variables or sum of t-distributed random variable and other parametric dis-

tributions – is not of a known form. Therefore, even inclusion of parametric unob-

served preference heterogeneity in the GCM-t model requires an additional layer
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of simulation to compute the likelihood function of the model. This necessity of

adding a simulation layer would motivate researchers to rather incorporate flexi-

ble semi-parametric (instead of parametric) preference heterogeneity distributions

in the GCM-t model (see Train, 2016; Vij and Krueger, 2017; Bansal et al., 2018c,

for recent developments in semi-parametrics). We leave this extension for future

work. Second, we considered the same degrees of freedom across all alternatives

of the choice model and the continuous variable model because the exact distri-

bution of linear or non-linear combinations of two t-distributed random variables

with a arbitrary degrees-of-freedom values is not known. Extending GCM-t to a

more flexible model with varying degrees of freedom across alternatives using a

copula-based approach (Bhat and Eluru, 2009) is a potential direction for future

developments. This copula-based extension would allow researchers to capture

decision-uncertainty behavior across alternatives, not just across decision-makers.

Third, the proposed GCM-t model cannot handle asymmetric error distributions.

From an estimation standpoint, extending GCM-t model to a GCM model with

a skew-t-distributed error kernel is not challenging because all relevant statisti-

cal properties are well-established in the literature (Azzalini and Genton, 2008).

However, practical concerns related to model inference and asymptotic properties

of this new estimator require further investigation (Azzalini and Arellano-Valle,

2013).

Finally, the full-information maximum likelihood estimation of GCM-t is slow

because it relies on a numerical gradient in the absence of tractable expressions

of the analytical gradient and Hessian matrix. The possibilities of developing a
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Bayesian estimator (Kim et al., 2007) or an expectation-maximization procedure

(Liu, 2004) can be explored in the future to speed up the estimation of the GCM-t

model.
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Table 4.2: Simulation Results of GCM-t Model for DOF-I scenario (DOF=1)

Parameter True Value MEV MAB APB FSSE ASE ASE/ FSSE CP Power
γ11 1 0.98 0.02 1.69 0.06 0.06 1.07 0.93 1
γ12 0.5 0.51 0.01 2.06 0.06 0.06 1.12 0.97 1
γ13 0.75 0.76 0.01 1.46 0.07 0.06 0.98 0.93 1
γ14 -0.5 -0.5 0 0.94 0.06 0.06 1.06 0.97 1
β21 -1.5 -1.74 0.24 16.23 0.28 0.16 0.56 0.47 1
β22 1 0.91 0.09 8.71 0.11 0.11 0.99 0.89 1
β23 0.9 0.81 0.09 10.35 0.13 0.12 0.98 0.9 1
β25 1 0.94 0.06 6.46 0.26 0.16 0.63 0.72 0.99
β31 -1.3 -1.47 0.17 13.21 0.26 0.2 0.77 0.85 1
β32 0.9 0.79 0.11 12.35 0.14 0.12 0.87 0.81 1
β33 0.8 0.68 0.12 15.58 0.16 0.13 0.84 0.79 1
β35 0.9 0.8 0.1 10.9 0.23 0.17 0.73 0.8 0.99
β41 -1.2 -1.36 0.16 13.49 0.27 0.2 0.76 0.79 1
β42 0.8 0.67 0.13 16.54 0.15 0.13 0.88 0.76 1
β43 0.7 0.57 0.13 18.7 0.19 0.15 0.81 0.8 0.93
β45 0.8 0.68 0.12 15.23 0.25 0.18 0.74 0.77 0.92
β51 -1 -1.08 0.08 7.72 0.22 0.18 0.83 0.91 1
β52 0.7 0.54 0.16 23.33 0.15 0.12 0.85 0.65 0.99
β53 0.6 0.43 0.17 27.66 0.17 0.15 0.84 0.76 0.83
β55 0.7 0.56 0.14 20.14 0.23 0.18 0.81 0.81 0.8

Covariance matrix elements
Σ11 1.5 1.62 0.12 8.28 0.1 0.09 0.97 0.75 1
Σ21 0.3 0.28 0.02 8.22 0.29 0.18 0.61 0.77 0.42
Σ31 0.4 0.44 0.04 9.78 0.3 0.2 0.66 0.79 0.6
Σ33 1.1 1.21 0.11 10.41 0.29 0.24 0.83 0.89 1
Σ41 0.6 0.72 0.12 20.24 0.35 0.24 0.7 0.78 0.76
Σ44 1.2 1.48 0.28 23.19 0.4 0.33 0.83 0.91 1
Σ51 0.5 0.6 0.1 19.12 0.34 0.24 0.72 0.82 0.65
Σ55 1.3 1.48 0.18 14.06 0.41 0.31 0.76 0.9 1

Degree-of-freedom
δ 1 1.08 0.08 8.24 0.03 0.04 1.1 0.43 1

Average 0.14 12.56 0.21 0.16 0.84 0.8 0.93
Note1: MEV: mean estimated value, MAB: mean absolute bias, APB: absolute percentage bias.
Note2: FSSE: finite sample standard error, ASE: asymptotic standard error, CP: coverage probability.
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Table 4.3: Simulation Results of GCM-t Model for DOF-II scenario (DOF=12)

Parameter True Value MEV MAB APB FSSE ASE ASE/ FSSE CP Power
γ11 1 1 0 0.38 0.04 0.05 1.09 0.97 1
γ12 0.5 0.5 0 0.77 0.05 0.05 0.99 0.97 1
γ13 0.75 0.75 0 0.42 0.05 0.05 0.94 0.91 1
γ14 -0.5 -0.5 0 0.26 0.05 0.05 0.92 0.91 1
β21 -1.5 -1.76 0.26 17.62 0.17 0.15 0.88 0.49 1
β22 1 0.89 0.11 11.48 0.11 0.11 0.96 0.8 1
β23 0.9 0.79 0.11 12.12 0.12 0.12 0.98 0.87 1
β25 1 0.9 0.1 10.28 0.18 0.19 1.08 0.94 1
β31 -1.3 -1.42 0.12 9.58 0.27 0.27 1.01 0.95 1
β32 0.9 0.76 0.14 16.03 0.13 0.13 1.02 0.77 1
β33 0.8 0.67 0.13 16.38 0.15 0.14 0.94 0.77 1
β35 0.9 0.74 0.16 17.89 0.18 0.19 1.06 0.83 0.99
β41 -1.2 -1.29 0.09 7.49 0.25 0.26 1.04 0.97 1
β42 0.8 0.63 0.17 21.82 0.13 0.12 0.92 0.65 1
β43 0.7 0.53 0.17 24.39 0.16 0.13 0.83 0.62 0.98
β45 0.8 0.64 0.16 20.04 0.19 0.19 1.04 0.87 0.93
β51 -1 -1.02 0.02 1.86 0.2 0.22 1.11 0.98 1
β52 0.7 0.5 0.2 28.48 0.12 0.11 0.94 0.52 1
β53 0.6 0.42 0.18 30.18 0.14 0.12 0.88 0.61 0.92
β55 0.7 0.53 0.17 24.78 0.18 0.19 1.02 0.79 0.81

Covariance matrix elements
Σ11 1.5 1.52 0.02 1.22 0.06 0.06 1.05 0.97 1
Σ21 0.3 0.17 0.13 43.74 0.21 0.19 0.9 0.85 0.19
Σ31 0.4 0.34 0.06 15.32 0.23 0.2 0.87 0.9 0.41
Σ33 1.1 1.1 0 0.04 0.41 0.41 1.01 0.93 1
Σ41 0.6 0.55 0.05 8.92 0.29 0.23 0.81 0.87 0.67
Σ44 1.2 1.21 0.01 0.53 0.48 0.48 1.01 0.9 1
Σ51 0.5 0.43 0.07 13.6 0.26 0.22 0.84 0.89 0.49
Σ55 1.3 1.2 0.1 7.58 0.4 0.45 1.1 0.91 1

Degree-of-freedom
δ 12 13.48 1.48 12.37 2.89 2.84 0.98 0.97 1

Average 0.18 12.95 0.28 0.27 0.97 0.84 0.91
Note1: MEV: mean estimated value, MAB: mean absolute bias, APB: absolute percentage bias.
Note2: FSSE: finite sample standard error, ASE: asymptotic standard error, CP: coverage probability.
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Table 4.4: Effect of ignoring non-normality (DOF=2)

Parameter True Value
MEV MAB APB MEV MAB APB
GCM-t with DOF of 2 GCM-t with DOF of 300

Mean effect elements
γ11 1 0.98 0.02 1.53 0.98 0.02 1.6
γ12 0.5 0.51 0.01 2.12 0.51 0.01 2.51
γ13 0.75 0.76 0.01 0.99 0.76 0.01 1.93
γ14 -0.5 -0.5 0 0.67 -0.51 0.01 2.48
β21 -1.5 -1.75 0.25 16.91 -1.4 0.1 6.36
β22 1 0.9 0.1 10.13 0.66 0.34 33.79
β23 0.9 0.81 0.09 9.94 0.6 0.3 32.91
β25 1 0.91 0.09 8.95 0.65 0.35 35.18
β31 -1.3 -1.49 0.19 14.34 -1.33 0.03 2.44
β32 0.9 0.76 0.14 16.1 0.55 0.35 38.33
β33 0.8 0.67 0.13 16.66 0.49 0.31 38.6
β35 0.9 0.82 0.08 9.33 0.6 0.3 33.77
β41 -1.2 -1.36 0.16 13.28 -1.16 0.04 2.98
β42 0.8 0.64 0.16 20.45 0.44 0.36 45.38
β43 0.7 0.5 0.2 28.62 0.33 0.37 52.55
β45 0.8 0.71 0.09 10.75 0.5 0.3 37.95
β51 -1 -1.09 0.09 8.82 -2.65 1.65 164.78
β52 0.7 0.53 0.17 24.31 0.34 0.36 51.03
β53 0.6 0.42 0.18 30.29 0.25 0.35 58.77
β55 0.7 0.55 0.15 21.58 0.28 0.42 60.32

Covariance matrix elements
Σ11 1.5 1.57 0.07 4.42 4.2 2.7 180.26
Σ21 0.3 0.24 0.06 21.37 -0.37 0.67 222.38
Σ31 0.4 0.32 0.08 19.77 -0.18 0.58 145.74
Σ33 1.1 1.09 0.01 0.72 1.54 0.44 39.58
Σ41 0.6 0.55 0.05 9.13 0.31 0.29 48.77
Σ44 1.2 1.23 0.03 2.25 1.39 0.19 15.44
Σ51 0.5 0.51 0.01 1.49 1.07 0.57 113.11
Σ55 1.3 1.37 0.07 5.48 14.58 13.28 1021.4

Degree-of-freedom
δ 2 2.12 0.12 5.84

Average 0.1 11.59 0.88 88.94
Loglikelihood -10417.44 -10922.73

Note: MEV: mean estimated value, MAB: mean absolute bias, APB: absolute percentage bias.
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Table 4.5: Effect of ignoring non-normality (DOF=12)

Parameter True Value
MEV MAB APB MEV MAB APB
GCM-t with DOF of 12 GCM-t with DOF of 300
Mean effect elements

γ11 1 1 0 0.39 1 0 0.32
γ12 0.5 0.49 0.01 1.46 0.49 0.01 1.77
γ13 0.75 0.75 0 0.45 0.75 0 0.03
γ14 -0.5 -0.5 0 0.26 -0.5 0 0.01
β21 -1.5 -1.75 0.25 16.83 -1.7 0.2 13.54
β22 1 0.89 0.11 11 0.85 0.15 14.99
β23 0.9 0.81 0.09 10.02 0.78 0.12 13.87
β25 1 0.89 0.11 10.84 0.85 0.15 14.84
β31 -1.3 -1.4 0.1 7.98 -1.36 0.06 4.97
β32 0.9 0.77 0.13 13.98 0.74 0.16 18.16
β33 0.8 0.72 0.08 10.01 0.69 0.11 13.78
β35 0.9 0.71 0.19 20.82 0.68 0.22 24.95
β41 -1.2 -1.32 0.12 10.17 -1.31 0.11 9.15
β42 0.8 0.63 0.17 21 0.6 0.2 25.02
β43 0.7 0.54 0.16 22.19 0.52 0.18 25.77
β45 0.8 0.64 0.16 19.57 0.61 0.19 24.17
β51 -1 -1.03 0.03 2.95 -1.04 0.04 4.31
β52 0.7 0.52 0.18 25.83 0.49 0.21 29.86
β53 0.6 0.45 0.15 25.09 0.42 0.18 29.24
β55 0.7 0.52 0.18 26.39 0.49 0.21 30.27

Covariance matrix elements
Σ11 1.5 1.51 0.01 0.33 1.77 0.27 17.8
Σ21 0.3 0.2 0.1 32.59 0.15 0.15 50.2
Σ31 0.4 0.4 0 0.16 0.38 0.02 4.28
Σ33 1.1 1.13 0.03 3.15 1.14 0.04 3.63
Σ41 0.6 0.57 0.03 5.12 0.59 0.01 1.82
Σ44 1.2 1.32 0.12 10 1.41 0.21 17.19
Σ51 0.5 0.47 0.03 5.93 0.48 0.02 4.8
Σ55 1.3 1.28 0.02 1.77 1.38 0.08 6.22

Degree-of-freedom
δ 12 13.56 1.56 13.04

Average 0.14 11.36 0.12 14.46
Loglikelihood -8977.45 -8994.84

Note: MEV: mean estimated value, MAB: mean absolute bias, APB: absolute percentage bias.
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Table 4.6: Sample of a choice situation in the discrete choice experiment

Gasoline version Electric version
Purchase Price $19,000 $34,000
Driving cost per 50 miles $5.5 per 50 miles $2.5 per 50 miles
Electric driving range 250 miles
EV parking: charging time for 50 miles 90 minutes per 50 miles
EV parking: charging type On-street
EV parking: time to find space 5 minutes
EC parking: monthly price $50 per month

Given the 2 options above. which car would you buy?

• Gasoline version

• Electric version

• Neither
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Table 4.7: Descriptive statistics of the sample

Variables Frequency/Average
Married indicator 36.45%
Indicator for having children 49.55%
Indicator for working full time 59.47%
Indicator for holding master’s or above degree 17.70%
Number of adults in household 2.88
Number of driving-license-holders in household 2.03
Number of vehicles in household 1.70
Indicator for owning hybrid electric vehicle 4.17%
Male indicator 29.51%
Hispanic indicator 9.53%
Walk score 77.33
Population density 21.53
Household annual vehicle miles traveled 14883.60
Race
African-American indicator 24.38%
Asian indicator 3.76%
Caucasian indicator 62.06%
Age category
Baby-boomer indicator 16.41%
GenX indicator 24.58%
Millenial indicator 57.65%
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Table 4.8: Comparison of GCM-t and GCM-N in empirical study (Part 1, t-value in parenthesis)
Model fit Statistics GCM-t Model GCM-N Model

Parameters
Continuous Unordered Continuous Unordered
Household

VMT
Gasoline Electric Opt-out

Household
VMT

Gasoline Electric Opt-out

Intercept
1.983

(81.22)
-1.755
(-5.69)

-4.229
(-9.82)

1.856
(34.64)

-1.599
(-5.66)

-5.027
(-7.83)

Demographic Variables

Married indicator
-0.059
(-4.38)

-0.105
(-6.19)

-0.033
(-1.10)

Indicator for having children
-0.244
(-7.80)

-0.030
(-4.50)

-0.227
(-7.09)

Indicator for working full time
0.174

(13.38)
0.136
(9.16)

Indicator for holding master’s
or above degree

0.144
(3.94)

0.025
(1.14)

0.119
(3.44)

Number of adults in household
0.109

(15.05)
0.049
(4.15)

Number of driving license
holders in household

0.055
(6.86)

0.076
(3.75)

-0.033
(-2.91)

Number of vehicles in household
-0.076
(-3.78)

0.013
(1.29)

-0.068
(-4.14)

Indicator for owning hybrid
electric vehicle

0.580
(8.12)

0.522
(8.02)

Male indicator
0.081
(2.85)

Hispanic indicator
-0.139
(-2.80)

-0.061
(-2.62)

-0.119
(-2.77)

Race (base: Caucasian)

African-American indicator
0.159
(9.62)

-0.071
(-2.25)

Asian indicator
-0.102
(-2.80)

0.274
(4.31)

Age category (base: Millennial)

Baby boomer indicator
-0.473

(-10.30)
-0.436

(-10.10)

GenX indicator
-0.207
(-5.51)

-0.189
(-5.60)

Environmental variables

Walk-score
0.635
(6.46)

0.103
(1.36)

0.538
(6.17)

Population density
of neighborhood

0.004
(5.60)

0.003
(2.93)

Note: VMT is vehicle-miles-traveled.
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Table 4.9: Comparison of GCM-t and GCM-N in empirical study (Part 2, t-value in parenthesis)
GCM-t Model GCM-N Model

Continuous Unordered Continuous Unordered
Household

VMT
Gasoline Electric Opt-out

Household
VMT

Gasoline Electric Opt-out

Alternative specific variables

Price (in $1,000)
-0.037
(-6.41)

-0.019
(-3.48)

-0.037
(-6.77)

-0.021
(-4.13)

Operating cost per 50 miles (in $)
-0.284
(-7.16)

-0.426
(-6.97)

-0.245
(-6.57)

-0.328
(-6.18)

Log of driving range (in 100 miles)
0.604
(8.29)

0.481
(7.50)

Electric vehicle charging time
(in hours)

-0.215
(-7.37)

-0.169
(-6.37)

Electric vehicle parking search time
(in minutes)

-0.015
(-3.00)

-0.013
(-2.99)

Monthly electric vehicle parking
cost (in $100)

-0.224
(-3.05)

-0.282
(-4.39)

Structural effect
Household vehicle miles traveled
(in 1000 miles)

-0.019
(-6.77)

-0.007
(-4.85)

Model fit statistics
Sample size 12336 12336
Number of parameters 39 42
Loglikelihood -22725.81 -22929.19
Bayesian Information Criterion 45611.18 46030.21
Trace of covariance matrix 1.06 3.43

Note: VMT is vehicle-miles-traveled.
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Table 4.10: Degree-of-freedom specification results in GCM-t model (t-value in parenthesis)

Parameter
Estimates
(T-value)

Intercept
1.191
(4.67)

Male indicator
0.202
(2.25)

Married indicator
0.128
(1.46)

Indicator for holding master’s or above degree
0.182
(1.67)

Number of adults in household
-0.165
(-5.32)

Number of driving license holders in household
0.132
(2.65)

Walk score
0.372
(1.30)

Race (base: Caucasian)

African-American indicator
-0.396
(-4.64)

Asian indicator
-0.309
(-1.48)

Table 4.11: Change in choice probability due to 1% reduction in parking-cost of electric vehicle

DOF lower limit DOF upper limit
GCM-t model GCM-N model

Gasoline Electric Vehicle opt-out Gasoline Electric Vehicle opt-out
1.27 2.37 -0.0002 0.0001 0.0000 -0.0003 0.0003 0.0000
2.37 2.83 -0.0002 0.0002 0.0000 -0.0003 0.0002 0.0000
2.83 3.16 -0.0002 0.0002 0.0000 -0.0003 0.0003 0.0000
3.16 3.53 -0.0002 0.0002 0.0000 -0.0003 0.0002 0.0000
3.53 3.86 -0.0002 0.0002 0.0000 -0.0003 0.0003 0.0000
3.86 4.16 -0.0002 0.0002 0.0000 -0.0003 0.0003 0.0000
4.16 4.40 -0.0002 0.0002 0.0000 -0.0004 0.0003 0.0000
4.40 4.83 -0.0002 0.0002 0.0000 -0.0004 0.0003 0.0000
4.83 5.33 -0.0003 0.0002 0.0000 -0.0004 0.0003 0.0000
5.33 9.32 -0.0003 0.0002 0.0000 -0.0004 0.0003 0.0000
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Table 4.12: Change in choice probability due to 25% reduction in parking-cost of electric vehicle

DOF lower limit DOF upper limit
GCM-t model GCM-N model

Gasoline Electric Vehicle opt-out Gasoline Electric Vehicle opt-out
1.27 2.37 -0.0050 0.0038 -0.0005 -0.0087 0.0064 -0.0004
2.37 2.83 -0.0054 0.0041 -0.0006 -0.0088 0.0061 -0.0006
2.83 3.16 -0.0052 0.0044 -0.0005 -0.0084 0.0068 -0.0005
3.16 3.53 -0.0053 0.0043 -0.0004 -0.0084 0.0062 -0.0004
3.53 3.86 -0.0056 0.0050 -0.0006 -0.0089 0.0073 -0.0005
3.86 4.16 -0.0057 0.0051 -0.0005 -0.0088 0.0070 -0.0006
4.16 4.40 -0.0062 0.0053 -0.0004 -0.0094 0.0072 -0.0006
4.40 4.83 -0.0060 0.0052 -0.0007 -0.0091 0.0070 -0.0009
4.83 5.33 -0.0072 0.0053 -0.0004 -0.0104 0.0073 -0.0005
5.33 9.32 -0.0069 0.0046 -0.0005 -0.0100 0.0064 -0.0007

Table 4.13: Ratio of GCM-t and GCM-N probabilities for chosen alternative for different DOF

DOF lower limit DOF upper limit Gasoline Electric Vehicle opt-out Sample size
1.27 2.37 0.96 0.96 1.91 1232
2.37 2.83 0.97 1.00 1.33 1232
2.83 3.16 0.99 0.96 1.30 1232
3.16 3.53 0.98 1.00 1.18 1208
3.53 3.86 1.01 0.97 1.44 1264
3.86 4.16 1.00 1.00 0.98 1216
4.16 4.40 1.01 1.00 0.77 1248
4.40 4.83 1.02 1.00 0.87 1224
4.83 5.33 1.02 1.01 0.96 1240
5.33 9.32 1.03 1.00 0.80 1232

Overall Average 1.00 0.99 1.15

Table 4.14: Covariance matrix (t-value in parenthesis)

GCM-t model GCM-N model
0.330

(40.42)
0.638

(84.77)
0.109
(7.12)

1.0
(fixed)

0.109
(5.42)

1.0
(fixed)

-0.020
(-1.31)

0.250
(2.35)

0.728
(3.16)

0.029
(1.07)

0.348
(1.58)

2.790
(2.60)
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APPENDIX A

APPENDIX OF CHAPTER 1

A.1 Model Specification: Willingness to Pay Space

Consider a standard discrete choice setting where individual n ∈ {1, . . . ,N} chooses

one alternative from the mutually exclusive choice set {1, . . . , J} (indexed by j)

over the set of discrete time periods {1, . . . ,T } or choice situations (indexed by t).

The random utility maximization model is specified as

Un jt = xn jt′ζn + εn jt = γR
n

ρn jt +
[
xF

n jt′ xR
n jt′

]  δF

δR
n

 + εn jt (A.1)

where1 Un jt is the random indirect utility associated with individual n choosing

alternative j during choice situation t, and εn jt is an iid extreme value type I pref-

erence shock. Moreover, both the alternative attributes and WTP parameters are

sorted in two groups. On the one hand, δF is a vector of fixed WTP and xF
n jt is the

attribute/covariate vector associated with these fixed WTP. On the other hand,

δR
n is a vector of random parameters and xR

n jt is the attribute vector for which

the researcher expects the presence of unobserved preference heterogeneity. γR
n is

marginal utility of price ρn jt, which is assumed to be random. The mixing distribu-

tion of the set of random parameters ηR
n = {γR

n , δ
R
n } is modeled semi-parametrically

below.

If int denotes the alternative observed to be chosen by individual n at time
1We use negative of price in equation A.1 to get correct sign on WTP estimates.
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t, consider now the sequence of chosen alternatives for the decision maker

{in1, . . . , inT }. The probability that individual n made this sequence of choices, con-

ditional on ζn, is:

Ln(ζn) =

T∏
t=1

Qnintt(ζn) (A.2)

where Qnintt(ζn) is the probability of individual n choosing alternative int in choice

situation t. The conditional choice probability Qnintt(ζn) is given by the following

conditional logit expression:

Qnintt(ζn) =
eUnint t∑J
j=1 eUn jt

. (A.3)

Variations in the set of random parameters ηR
n are represented semi-

parametrically with a discrete mixing distribution over a finite support set S . Con-

sider the following logit-type expression for the probability that ηR
n = ηR

r :

wn(ηR
r |α) = Pr(ηR

n = ηR
r ) =

ez(ηR
r )′α∑

s∈S ez(ηR
s )′α

(A.4)

where α is a vector of parameters and z(ηR
r ) is a vector-valued function that cap-

tures the shape of the mixing distribution. z can be specified as a sieve function,

such as polynomial or other functional forms, including step functions and splines

(see details in Train, 2016).

The unconditional probability of the sequence of choices of individual n (Pn) is

simply:

Pn(δF ,α) =
∑
r∈S

Ln(δF , ηR
r )wn(ηR

r |α), (A.5)

where the parameters of interest are δF and α.
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A.2 Maximum Likelihood Estimator

Adopting a frequentist approach to the estimation of the parameters of interest,

the maximum likelihood estimator is implemented. The loglikelihood of the LML-

FR model is shown in equation 1.6:

L(δF ,α) =

N∑
n=1

ln
(∑

r∈S

Ln(δF , ηR
r )wn(ηR

r |α)
)
. (A.6)

The simulated loglikelihood can be then written as:

L̃(δF ,α) =

N∑
n=1

ln
(∑

r∈S n

Ln(δF , ηR
r )wn(ηR

r |α)
)
. (A.7)

The partial derivative of L̃with respect to α is:

∂L̃

∂α
=

N∑
n=1

∑
r∈S n

(
hn(δF , ηR

r |α) − wn(ηR
r |α)

)
z(ηR

r ) (A.8)

where

hn(δF , ηR
r |α) =

Ln(δF , ηR
r )wn(ηR

r |α)∑
s∈S n

Ln(δF , ηR
s )wn(ηR

s |α)
; (A.9)

and the partial derivative of L̃with respect to δF is:

∂L̃

∂δF =

N∑
n=1

∑
r∈S n

(
γR

n hn(δF , ηR
r |α)

T∑
t=1

(
xF

nintt −

J∑
j=1

xF
n jtQn jt

))
. (A.10)

Finally, the simulated score (gradient of L̃) is:

∇(L̃) =

[
∂L̃

∂α

∂L̃

∂δF

]
. (A.11)

172



www.manaraa.com

APPENDIX B

APPENDIX OF CHAPTER 2

This section explores the lower-bound approximation of the weighted MNL Hes-

sian. We first provide the sketch of the proof given by Böhning and Lindsay (1988)

and then illustrate tightness of the approximation under different situations in a

Monte Carlo study.

We used the lower-bound approximation of the Hessian of the weighted panel

MNL model in the minorization-maximization algorithm, but to understand be-

havior of the approximation we consider the Hessian of an unweighted cross-

section MNL model:

H = −

N∑
i=1

[ J∑
j=1

xi jxi j
T Pi j(α) −

( J∑
j=1

xi jPi j(α)
)( J∑

j=1

xi jPi j(α)
)T

]
,

where xi j is the attribute vector of alternative j for person i, and Pi j(α) is the prob-

ability (conditional on α) of that person i choosing alternative j.

For an arbitrary h, consider the alternative representation of the quadratic form

(QF) of the Hessian:

QF1 = hT

− N∑
i=1

[ J∑
j=1

xi jxi j
T Pi j(α) −

( J∑
j=1

xi jPi j(α)
)( J∑

j=1

xi jPi j(α)
)T

] h

QF2 = −

N∑
i=1

 J∑
j=1

(hT xi j)2Pi j(α) −

 J∑
j=1

(hT xi j)Pi j(α)


2

QF3 = −

N∑
i=1

hT xi

(
D(Pi) − Pi PT

i

)
xT

i h = −

N∑
i=1

(hT xi)M(Pi)(xT
i h),
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where xi is a matrix of dimension K × J (K is the dimension of attributes and J is

the number of alternatives), Pi is a column vector of choice probabilities for person

i, and D(Pi) is a diagonal matrix with vector Pi in the diagonal.

Expression QF3 indicates that finding the global lower bound of the Hessian

is the same as finding the global upper bound (which does not depend on the

parameter α) of M(Pi). According to QF2, the problem is the same as maximizing

the variance of a random variable (hT xi j) which has probability density function

Pi j. Since the variance can be maximized by setting an equal weight of 0.5 on

maximum and minimum values of (hT xi j), P∗ = [.5, .5] is an optimal choice to

obtain the lower bound of the Hessian.

The bound is sharp for two alternatives, and Böhning and Lindsay (1988) ex-

tended the bound for the multinomial case. The authors suggested to find a con-

stant c(J) (a constant as a function of J) such that M(Pi) ≤ c(J)M(P∗), where P∗ is

a vector of uniform multinomial probabilities (i.e., [ 1
J . . .

1
J ]). Using the same idea

of weight allocation, Böhning and Lindsay (1988) found the value of c(J) = J
2 as

optimal choice to obtain the lower bound of the Hessian. Since h can have any

arbitrary value, we set it to the unit vector and insert the upper bound of M(Pi) in

QF3 to obtain the approximation of Hessian (B1):

B1 = −
1
2

N∑
i=1

[ J∑
j=1

xi jxi j
T −

1
J

( J∑
j=1

xi j

)( J∑
j=1

xi j

)T
]
.

Böhning and Lindsay (1988) noted that the magnitude of 1
2

∑N
i=1

1
J

(∑J
j=1 xi j

)(∑J
j=1 xi j

)T
,

as compared to −1
2

∑N
i=1

∑J
j=1 xi jxi j

T , starts diminishing as the number of alterna-
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tives grows. For a large choice set, B1 effectively becomes closer to B2:

B2 = −
1
2

N∑
i=1

J∑
j=1

xi jxi j
T .

To empirically understand the effect of the number of alternatives on the Hes-

sian approximation, we considered several simulation scenarios with a uni-

dimensional attribute (K = 1). The average of the approximate and true Hes-

sian values across 50 repetitions are summarized in Table B.1. Each scenario is

defined according to a combination of mean and standard deviations of the at-

tribute, whether the actual PDF of Pi is uniform or not, and whether attributes

are standardized or not. Consistent across all scenarios, the approximation B1

performs well for 2 alternatives. In fact, it coincides with the true value of the

Hessian when the actual distribution of the choice probabilities is uniform. As ex-

pected, B1 is slightly away from the true Hessian even for the two-alternative case

when choice probabilities are simulated randomly. B1 becomes a poorer lower

bound approximation of the Hessian with an increase in the number of alterna-

tives, which can be attributed to a poor extension of the binary analogy to the

multinomial case – there is no strong reason to use M(Pi) ≤ c(J)M(P∗). As the

number of alternatives increases, B1− B2 increases but the relative contribution of

B1 − B2 decreases and thus B1 attains a value closer to B2. However, comparison

of scenarios 3, 4, and 5 indicates that the percentage difference between B1 and the

true Hessian is not affected by the change in standard deviation of the attributes,

but B2 does become worse when the standard deviation is lower. This observation

supports the original findings of Böhning and Lindsay (1988) who noted that B1

is unaffected by standardization of the attributes, but B2 lacks this feature.
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Table B.1: Lower Bound Approximation of Hessian: Simulation Results
Scenario J Mean Std. Dev. PDFa Standardizedb B1 B2 B1-B2 B1/B1-B2 H (H-B1)/H*100 (H-B2)/H*100 (H-B2)/(H-B1)

1 2 0 1 Uniform No -501 -1000 499 -1.0 -501.2 0 -99.5 ∞

1 5 0 1 Uniform No -1997 -2498 501 -4.0 -798.7 -150 -212.7 1.4
1 10 0 1 Uniform No -4509 -5011 502 -9.0 -901.7 -400 -455.7 1.1
1 100 0 1 Uniform No -49470 -49967 496 -99.9 -989.4 -4900 -4950.2 1.0

2 2 0 1 Random No -500 -1002 502 -1.0 -395.8 -26 -153.3 5.8
2 5 0 1 Random No -2002 -2502 501 -4.0 -733.8 -173 -241.0 1.4
2 10 0 1 Random No -4475 -4975 500 -9.0 -862.9 -419 -476.6 1.1
2 100 0 1 Random No -49535 -50039 504 -98.4 -987.4 -4917 -4967.6 1.0

3 2 2 2 Uniform No -2012 -7988 5976 -0.3 -2012.1 0 -297.0 ∞

3 5 2 2 Uniform No -7993 -20071 12077 -0.7 -3197.4 -150 -527.7 3.5
3 10 2 2 Uniform No -18025 -40059 22034 -0.8 -3605.0 -400 -1011.2 2.5
3 100 2 2 Uniform No -198234 -400504 202270 -1.0 -3964.7 -4900 -10001.8 2.0

4 2 2 0.5 Uniform No -125 -4255 4130 -0.030 -125.1 0 -3301.7 ∞

4 5 2 0.5 Uniform No -501 -10633 10132 -0.049 -200.5 -150 -5203.3 34.7
4 10 2 0.5 Uniform No -1125 -21257 20132 -0.056 -225.0 -400 -9346.1 23.4
4 100 2 0.5 Uniform No -12365 -212482 200117 -0.062 -247.3 -4900 -85819.5 17.5

5 2 2 0.1 Uniform No -5 -4009 4004 -0.0012 -5.0 0 -80223.5 ∞

5 5 2 0.1 Uniform No -20 -10024 10004 -0.0020 -8.0 -150 -125232.4 834.9
5 10 2 0.1 Uniform No -45 -20050 20005 -0.0022 -9.0 -400 -222740.0 556.9
5 100 2 0.1 Uniform No -495 -200509 200014 -0.0025 -9.9 -4900 -2024817.9 413.2

6 2 2 2 Uniform Yes -503 -1008 505 -1.0 -502.7 0 -100.5 ∞

6 5 2 2 Uniform Yes -2007 -2507 500 -4.0 -802.7 -150 -212.2 1.4
6 10 2 2 Uniform Yes -4494 -4998 504 -8.9 -898.8 -400 -456.1 1.1
6 100 2 2 Uniform Yes -49484 -49984 500 -99.2 -989.7 -4900 -4950.5 1.0

a Probability density function across alternatives; uniform Pi: [ 1
J . . .

1
J ].

b Standardization - subtract mean from the attribute and divide by standard deviation.
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APPENDIX C

APPENDIX OF CHAPTER 4

C.1 Matrix transformations

C.1.1 Transformation matrix (D) to compute Λ from Λ

We show below the relation between the variance-covariance matrix of the er-

ror
(
ΛIK×IK

)
and the normalized variance-covariance matrix of the error difference(

Λ(IK−1)×(IK−1)

)
:

Λ =


Λ1 Λ1,2 . . . Λ1,I−1

Λ2,1 Λ2 . . . Λ2,I−1
...

...
. . .

...

ΛI−1,1 ΛI−1,2 . . . ΛI−1


(IK−I)×(IK−I)

where Λi =


1 Λ

i
1,2 . . . Λ

i
1,iK−1

Λ
i
2,1 Λ

i
2,2 . . . Λ

i
2,iK−1

...
...

. . .
...

Λ
i
iK−1,1 Λ

i
iK−1,2 . . . Λ

i
iK−1,iK−1


(iK−1)×(iK−1)

(C.1)

Λ =


Λ1 Λ1,2 . . . Λ1,I

Λ2,1 Λ2 . . . Λ2,I
...

...
. . .

...

ΛI,1 ΛI,2 . . . ΛI


(IK )×(IK )

(C.2)

where Λi =

 0 01,iK−1

0iK−1,1 Λi


iK×iK

and Λi, j =

 0 01, jK−1

0iK−1,1 Λi, j


iK× jK
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Note that Λ = DΛD>, where the transformation matrix D is constructed based

on algorithm 5.

Algorithm 5: Creating D matrix
Initialization: D = 0IK×(IK−1)

for (m in 1 to I) do
if m == 1 then

R1 = 2 ;
R2 = mK ;
C1 = 1 ;
C2 = mK − 1 ;

else

R1 =
m−1∑
n=1

nK + 2 ;

R2 =
m∑

n=1
nK ;

C1 =
m−1∑
n=1

(nK − 1) + 1 ;

C2 =
m∑

n=1
(nK − 1) ;

end
D(R1 : R2,C1 : C2) = 1(mK−1)×(mK−1) ;

end
Note: 1i×i and 0i×i are identity matrix and matrix of zeros, respectively, of size
i × i.

We provide an example to illustrate the transformation from Λ to Λ using D.

We consider a case of I = 2, with 1K = 3 and 2K = 4. The Λ5×5, Λ7×7, and the

transformation matrix D7×5 would be:
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Λ =

 Λ1 Λ1,2

Λ2,1 Λ2

 =



1 Λ
1
1,2 Λ

1,2
1,1 Λ

1,2
1,2 Λ

1,2
1,3

Λ
1
2,1 Λ

1
2,2 Λ

1,2
2,1 Λ

1,2
2,2 Λ

1,2
2,3

Λ
2,1
1,1 Λ

2,1
1,2 1 Λ

2
1,2 Λ

2
1,3

Λ
2,1
2,1 Λ

2,1
2,2 Λ

2
2,1 Λ

2
2,2 Λ

2
2,3

Λ
2,1
3,1 Λ

2,1
3,2 Λ

2
3,1 Λ

2
3,2 Λ

2
3,3



Λ =

 Λ1 Λ1,2

Λ2,1 Λ2

 ==



0 0 0 0 0 0 0

0 1 Λ
1
1,2 0 Λ

1,2
1,1 0Λ

1,2
1,2 Λ

1,2
1,3

0 Λ
1
2,1 Λ

1
2,2 0 Λ

1,2
2,1 Λ

1,2
2,2 Λ

1,2
2,3

0 0 0 0 0 0 0

0 Λ
2,1
1,1 Λ

2,1
1,2 0 1 Λ

2
1,2 Λ

2
1,3

0 Λ
2,1
2,1 Λ

2,1
2,2 0 Λ

2
2,1 Λ

2
2,2 Λ

2
2,3

0 Λ
2,1
3,1 Λ

2,1
3,2 0 Λ

2
3,1 Λ

2
3,2 Λ

2
3,3



D =



0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(C.3)
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C.1.2 Modified transformation matrix (Dm) to compute Σ from Σ

The modified transformation matrix (Dm) can be easily computed from the transfor-

mation matrix (D) by appending an identity matrix as follows:

Dm =

 1H×H 0H×(IK−I)

0IK×H D


(H+IK )×(H+IK−I)

(C.4)

where H is the number of continuous outcomes, 1H×H is an identity matrix of size

H×H, and D is obtained from algorithm 5. We expand on the example of appendix

C.1.1 which considers I = 2 with 1K = 3 and 2K = 4. If H = 2, then the modified

transformation matrix Dm would be:

Dm =

 12×2 02×5

07×2 D7×5



=



1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



(C.5)
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C.1.3 Utility difference generator (M) to compute Σ̃ from Σ

Algorithm 6: Creating M matrix
Initialisation: M = 0(H+IK−I)×(H+IK ) ;
M(1 : H, 1 : H) = 1H×H ;
for (n in 1 to I) do

F1 = 1(nK−1)×(nK−1) ;
T1 = −OnK−1 ;
if nm == 1 then

S 1 = T1 ∼ F1 ;
else

if nm == nK then
S 1 = F1 ∼ T1 ;

else
S 1 = F1[, 1 : (nm − 1)] ∼ T1 ∼ F1[, nm : (nK − 1)];

end
end
if n == 1 then

R1 = H + 1 ;
R2 = H + nK − 1;
C1 = H + 1 ;
C2 = H + nK ;

else

R1 = H +

(
n−1∑
j=1

( jK − 1)
)

+ 1 ;

R2 = H +

(
n∑

j=1
( jK − 1)

)
;

C1 = H +

(
n−1∑
j=1

jK

)
+ 1 ;

C2 = H +

(
n∑

j=1
jK

)
;

end
M(R1 : R2,C1 : C2) = S 1;

end
Note 1: 1i×i and 0i×i are identity matrix and matrix of zeros, respectively, of size i × i.
Note 2: Oi is a column vector of ones of size i × 1. “ ∼ ” implies horizontal concatenation.
Note 3: nm is the index of the chosen alternative for the nominal variable n.
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We consider the same example of appendix C.1.2 which considers H = 2 and

I = 2 with 1K = 3, 1m = 2, 2K = 4, and 2m = 3. We use algorithm 6 to construct M

matrix for this example:

M =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 −1 1


(C.6)

C.1.4 Reparametrization of the Cholesky decomposition of Σ

Consider LL> = Σ, where L is the lower triangular Cholesky matrix of size (H +

IK − I) × (H + IK − I). We reparametrize all rows of the L matrix for which the

diagonal element of Σ is normalized to 1. We compute ai =

√
1 +

i−1∑
j=1

L2
i, j for the

ith row and modify non-diagonal elements Li,r =
Li,r

ai
∀r ∈ {1, 2, . . . , i − 1} and the

diagonal element Li,i = 1
ai

.
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C.2 MVTNCD illustration

The derivation of equation 4.8 from equation 4.6 can be understood easily based

on a transformation applied on a bivariate t-cumulative distribution function. For

p = 2 , equation 4.6 after substitution can be written as (note that w1 = u1 ):

Tp(a, b,Ω, δ) = κ2
δ

b̂1∫
â1

(
1 +

u2
1

δ

)− (δ+2)
2

b̂2∫
â2

(
1 +

u2
2

δ + 2 − 1

)− (δ+2)
2

du1

du2

√
δ + u2

1

δ + 1


= κ2

δ


b̂1∫

â1

√
δ + u2

1

δ + 1

(
1 +

u2
1

δ

)− (δ+2)
2

du1




b̂2∫
â2

(
1 +

u2
2

δ + 2 − 1

)− (δ+2)
2

du2


= κ2

δ


b̂1∫

â1

√(
δ

δ + 1

) (
1 +

u2
1

δ

) (
1 +

u2
1

δ

)− (δ+2)
2

du1




b̂2∫
â2

(
1 +

u2
2

δ + 2 − 1

)− (δ+2)
2

du2


= κ2

δ

√
δ

δ + 1

b̂1∫
â1

(
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Now deriving equation 4.8

=
Γ
(
δ+2

2

)
Γ
(
δ
2

)
(πδ)

√
δ

δ + 1

b̂1∫
â1
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â2

(
1 +

u2
2

δ + 2 − 1

)− (δ+2)
2

du1

 (equation 4.8)

183



www.manaraa.com

BIBLIOGRAPHY

Abay, K. A. (2015), ‘Evaluating simulation-based approaches and multivariate

quadrature on sparse grids in estimating multivariate binary probit models’,

Economics Letters 126, 51–56.

Achtnicht, M., Bühler, G. and Hermeling, C. (2012), ‘The impact of fuel avail-

ability on demand for alternative-fuel vehicles’, Transportation Research Part D:

Transport and Environment 17(3), 262–269.

Ahsanullah, M., Kibria, B. G. and Shakil, M. (2014), Normal distribution, in ‘Nor-

mal and Student´s t Distributions and Their Applications’, Springer, pp. 7–50.

Askey, R. (1975), Orthogonal polynomials and special functions, Vol. 21, Siam.

Azzalini, A. and Arellano-Valle, R. B. (2013), ‘Maximum penalized likelihood esti-

mation for skew-normal and skew-t distributions’, Journal of Statistical Planning

and Inference 143(2), 419–433.

Azzalini, A. and Genton, M. G. (2008), ‘Robust likelihood methods based on the

skew-t and related distributions’, International Statistical Review 76(1), 106–129.

Bajari, P., Fox, J. T. and Ryan, S. P. (2007), ‘Linear regression estimation of dis-

crete choice models with nonparametric distributions of random coefficients’,

The American Economic Review 97(2), 459–463.

Bansal, P., Daziano, R. A. and Achtnicht, M. (2018a), ‘Comparison of parametric

and semiparametric representations of unobserved preference heterogeneity in

logit models’, Journal of Choice Modelling 27, 97–113.

184



www.manaraa.com

Bansal, P., Daziano, R. A. and Achtnicht, M. (2018b), ‘Extending the logit-mixed

logit model for a combination of random and fixed parameters’, Journal of Choice

Modelling 27, 88–96.

Bansal, P., Daziano, R. A. and Achtnicht, M. (2018c), ‘Extending the logit-mixed

logit model for a combination of random and fixed parameters’, Journal of choice

modelling 27, 88–96.

Bastin, F., Cirillo, C. and Toint, P. L. (2010), ‘Estimating nonparametric random

utility models with an application to the value of time in heterogeneous popu-

lations’, Transportation Science 44(4), 537–549.

Bazán, J. L., Bolfarine, H. and Branco, M. D. (2010), ‘A framework for skew-probit

links in binary regression’, Communications in Statistics—Theory and Methods

39(4), 678–697.

Beck, M. J., Rose, J. M. and Hensher, D. A. (2013), ‘Consistently inconsistent: The

role of certainty, acceptability and scale in choice’, Transportation Research Part E:

Logistics and Transportation Review 56, 81–93.

Ben-Akiva, M., Walker, J., Bernardino, A. T., Gopinath, D. A., Morikawa, T. and

Polydoropoulou, A. (2002), ‘Integration of choice and latent variable models’,

Perpetual motion: Travel behaviour research opportunities and application challenges

pp. 431–470.

Bhaduri, A. and Graham-Brady, L. (2018), ‘An efficient adaptive sparse grid collo-

185



www.manaraa.com

cation method through derivative estimation’, Probabilistic Engineering Mechan-

ics 51, 11–22.

Bhat, C. R. (1997), ‘An endogenous segmentation mode choice model with an ap-

plication to intercity travel’, Transportation Science 31(1), 34–48.

Bhat, C. R. (2001), ‘Quasi-random maximum simulated likelihood estimation of

the mixed multinomial logit model’, Transportation Research Part B: Methodologi-

cal 35(7), 677–693.

Bhat, C. R. (2003), ‘Simulation estimation of mixed discrete choice models using

randomized and scrambled halton sequences’, Transportation Research Part B:

Methodological 37(9), 837–855.

Bhat, C. R. (2011), ‘The maximum approximate composite marginal likelihood

(macml) estimation of multinomial probit-based unordered response choice

models’, Transportation Research Part B: Methodological 45(7), 923–939.

Bhat, C. R. (2014), ‘The composite marginal likelihood (CML) inference approach

with applications to discrete and mixed dependent variable models’, Founda-

tions and Trends R© in Econometrics 7(1), 1–117.

Bhat, C. R. (2015), ‘A new generalized heterogeneous data model (ghdm) to

jointly model mixed types of dependent variables’, Transportation Research Part

B: Methodological 79, 50–77.

Bhat, C. R., Astroza, S. and Hamdi, A. S. (2017), ‘A spatial generalized ordered-

186



www.manaraa.com

response model with skew normal kernel error terms with an application to

bicycling frequency’, Transportation Research Part B: Methodological 95, 126–148.

Bhat, C. R., Dubey, S. K. and Nagel, K. (2015), ‘Introducing non-normality of la-

tent psychological constructs in choice modeling with an application to bicyclist

route choice’, Transportation Research Part B: Methodological 78, 341–363.

Bhat, C. R. and Eluru, N. (2009), ‘A copula-based approach to accommodate resi-

dential self-selection effects in travel behavior modeling’, Transportation Research

Part B: Methodological 43(7), 749–765.

Bhat, C. R. and Lavieri, P. S. (2017), ‘A new mixed MNP model accommodating a

variety of dependent non-normal coefficient distributions’, Theory and Decision

pp. 1–37.

Bhat, C. R. and Sidharthan, R. (2012), ‘A new approach to specify and estimate

non-normally mixed multinomial probit models’, Transportation Research Part B:

Methodological 46(7), 817–833.

Bierlaire, M. (2016), PythonBiogeme: a short introduction, Technical report,

TRANSP-OR 160706. Transport and Mobility Laboratory, ENAC, EPFL.

Böhning, D. and Lindsay, B. G. (1988), ‘Monotonicity of quadratic-approximation

algorithms’, Annals of the Institute of Statistical Mathematics 40(4), 641–663.

Börger, T. (2016), ‘Are fast responses more random? testing the effect of response

time on scale in an online choice experiment’, Environmental and Resource Eco-

nomics 65(2), 389–413.

187



www.manaraa.com

Boyd, J. H. and Mellman, R. E. (1980), ‘The effect of fuel economy standards on

the us automotive market: an hedonic demand analysis’, Transportation Research

Part A: General 14(5-6), 367–378.

Brathwaite, T. and Walker, J. L. (2018), ‘Asymmetric, closed-form, finite-parameter

models of multinomial choice’, Journal of Choice Modelling 29, 78–112.

Brownstone, D. and Train, K. (1998), ‘Forecasting new product penetration with

flexible substitution patterns’, Journal of Econometrics 89(1), 109–129.

Brumm, J. and Scheidegger, S. (2017), ‘Using adaptive sparse grids to solve high-

dimensional dynamic models’, Econometrica 85(5), 1575–1612.

Bunch, D. S., Bradley, M., Golob, T. F., Kitamura, R. and Occhiuzzo, G. P. (1993),

‘Demand for clean-fuel vehicles in california: a discrete-choice stated preference

pilot project’, Transportation Research Part A: Policy and Practice 27(3), 237–253.

Cagnone, S. and Bartolucci, F. (2017), ‘Adaptive quadrature for maximum like-

lihood estimation of a class of dynamic latent variable models’, Computational

Economics 49(4), 599–622.

Camilleri, L. (2009), ‘Bias of standard errors in latent class model applications

using Newton-Raphson and EM algorithms.’, Journal of Advanced Computational

Intelligence and Intelligent Informatics 13(5), 537–541.

Castillo, E., Menéndez, J. M., Jiménez, P. and Rivas, A. (2008), ‘Closed form expres-

sions for choice probabilities in the weibull case’, Transportation Research Part B:

Methodological 42(4), 373–380.

188



www.manaraa.com

Cherchi, E. and Guevara, C. A. (2012), ‘A Monte Carlo experiment to analyze

the curse of dimensionality in estimating random coefficients models with a

full variance–covariance matrix’, Transportation Research Part B: Methodological

46(2), 321–332.

Cherchi, E. and Polak, J. W. (2005), ‘Assessing user benefits with discrete choice

models: Implications of specification errors under random taste heterogeneity’,

Transportation Research Record 1926(1), 61–69.

Cherry, C. and Cervero, R. (2007), ‘Use characteristics and mode choice behavior

of electric bike users in China’, Transport Policy 14(3), 247–257.

Clark, W. A., Huang, Y. and Withers, S. (2003), ‘Does commuting distance mat-

ter?: Commuting tolerance and residential change’, Regional Science and Urban

Economics 33(2), 199–221.

CMC (2017), CMC choice modelling code for R, Technical report, Choice Mod-

elling Centre, University of Leeds, www.cmc.leeds.ac.uk.

Craig, P. (2008), ‘A new reconstruction of multivariate normal orthant proba-

bilities’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)

70(1), 227–243.

Davis, P. J. and Rabinowitz, P. (2007), Methods of numerical integration, Courier Cor-

poration.

Daziano, R. A. (2013), ‘Conditional-logit Bayes estimators for consumer valuation

of electric vehicle driving range’, Resource and Energy Economics 35(3), 429–450.

189



www.manaraa.com

De Leon, A. R. and Chough, K. C. (2013), Analysis of mixed data: methods & applica-

tions, CRC Press.

Dekker, T., Hess, S., Brouwer, R. and Hofkes, M. (2016), ‘Decision uncertainty in

multi-attribute stated preference studies’, Resource and Energy Economics 43, 57–

73.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), ‘Maximum likelihood from

incomplete data via the EM algorithm’, Journal of the Royal Statistical Society Se-

ries B (Methodological) pp. 1–38.

DeSarbo, W. S., Ramaswamy, V. and Cohen, S. H. (1995), ‘Market segmentation

with choice-based conjoint analysis’, Marketing Letters 6(2), 137–147.

Dick, J. and Pillichshammer, F. (2014), Discrepancy theory and quasi-monte carlo

integration, in ‘A Panorama of Discrepancy Theory’, Springer, pp. 539–619.

Ding, P. (2016), ‘On the conditional distribution of the multivariate t distribution’,

The American Statistician 70(3), 293–295.

Elrod, T., Johnson, R. D. and White, J. (2004), ‘A new integrated model of non-

compensatory and compensatory decision strategies’, Organizational Behavior

and Human Decision Processes 95(1), 1–19.

Ewing, R. and Cervero, R. (2010), ‘Travel and the built environment: a meta-

analysis’, Journal of the American Planning Association 76(3), 265–294.

URL: http://www.informaworld.com/10.1080/01944361003766766

190



www.manaraa.com

Fang, H. A. (2008), ‘A discrete–continuous model of households’ vehicle choice

and usage, with an application to the effects of residential density’, Transporta-

tion Research Part B: Methodological 42(9), 736–758.

Ferguson, T. S. (1973), ‘A Bayesian analysis of some nonparametric problems’, The

Annals of Statistics pp. 209–230.

Fisher, C., Bashyal, S. and Bachman, B. (2012), ‘Demographic impacts on envi-

ronmentally friendly purchase behaviors’, Journal of Targeting, Measurement and

Analysis for Marketing 20(3-4), 172–184.

Fosgerau, M. (2006), ‘Investigating the distribution of the value of travel time sav-

ings’, Transportation Research Part B: Methodological 40(8), 688–707.

Fosgerau, M. and Bierlaire, M. (2007), ‘A practical test for the choice of mixing

distribution in discrete choice models’, Transportation Research Part B: Method-

ological 41(7), 784–794.

Fosgerau, M. and Bierlaire, M. (2009), ‘Discrete choice models with multiplicative

error terms’, Transportation Research Part B: Methodological 43(5), 494–505.

Fosgerau, M. and Hess, S. (2007), Competing methods for representing random

taste heterogeneity in discrete choice models, Technical report, Working paper,

Danish Transport Research Institute, Copenhagen.

Fosgerau, M. and Hess, S. (2009), ‘A comparison of methods for representing ran-

dom taste heterogeneity in discrete choice models’, European Transport-Trasporti

Europei 42, 1–25.

191



www.manaraa.com

Fosgerau, M. and Mabit, S. L. (2013), ‘Easy and flexible mixture distributions’,

Economics Letters 120(2), 206–210.

Fox, J. T., Ryan, S. P. and Bajari, P. (2011), ‘A simple estimator for the distribution

of random coefficients’, Quantitative Economics 2(3), 381–418.

Franceschinis, C., Scarpa, R. and Thiene, M. (2017), A Monte Carlo evaluation

of the logit-mixed logit under asymmetry and multimodality, Technical report,

Working Paper, University of Waikato, Hamilton.

Genz, A. (1992), ‘Numerical computation of multivariate normal probabilities’,

Journal of computational and graphical statistics 1(2), 141–149.

Genz, A. and Bretz, F. (1999), ‘Numerical computation of multivariate t-

probabilities with application to power calculation of multiple contrasts’, Jour-

nal of Statistical Computation and Simulation 63(4), 103–117.

Geweke, J., Keane, M. and Runkle, D. (1994), ‘Alternative computational ap-

proaches to inference in the multinomial probit model’, The review of economics

and statistics pp. 609–632.

Golub, G. H. and Welsch, J. H. (1969), ‘Calculation of gauss quadrature rules’,

Mathematics of computation 23(106), 221–230.

Goos, P. and Mylona, K. (2018), ‘Quadrature methods for bayesian optimal design

of experiments with nonnormal prior distributions’, Journal of Computational and

Graphical Statistics 27(1), 179–194.

192



www.manaraa.com

Greene, W. H. and Hensher, D. A. (2013), ‘Revealing additional dimensions of

preference heterogeneity in a latent class mixed multinomial logit model’, Ap-

plied Economics 45(14), 1897–1902.

Guerra, E. (2017), ‘Electric vehicles, air pollution, and the motorcycle city: A stated

preference survey of consumers’ willingness to adopt electric motorcycles in

Solo, Indonesia’, Transportation Research Part D: Transport and Environment .

Guevara, C. A., Cherchi, E. and Moreno, M. (2009), ‘Estimating random coefficient

logit models with full covariance matrix: comparing performance of mixed logit

and laplace approximation methods’, Transportation Research Record 2132(1), 87–

94.

Hajivassiliou, V., McFadden, D. and Ruud, P. (1996), ‘Simulation of multivariate

normal rectangle probabilities and their derivatives theoretical and computa-

tional results’, Journal of econometrics 72(1-2), 85–134.

Heiss, F. (2010), The panel probit model: Adaptive integration on sparse grids,

in ‘Maximum simulated likelihood methods and applications’, Emerald Group

Publishing Limited, pp. 41–64.

Heiss, F. and Winschel, V. (2008), ‘Likelihood approximation by numerical inte-

gration on sparse grids’, journal of Econometrics 144(1), 62–80.

Hensher, D. A. and Greene, W. H. (2003), ‘The mixed logit model: the state of

practice’, Transportation 30(2), 133–176.

193



www.manaraa.com

Hess, S., Train, K. E. and Polak, J. W. (2006), ‘On the use of a modified latin hy-

percube sampling (mlhs) method in the estimation of a mixed logit model for

vehicle choice’, Transportation Research Part B: Methodological 40(2), 147–163.

Jakeman, J. D. and Narayan, A. (2018), ‘Generation and application of multivari-

ate polynomial quadrature rules’, Computer Methods in Applied Mechanics and

Engineering 338, 134–161.

Jakobsson, N., Gnann, T., Plötz, P., Sprei, F. and Karlsson, S. (2016), ‘Are multi-

car households better suited for battery electric vehicles?–driving patterns and

economics in sweden and germany’, Transportation Research Part C: Emerging

Technologies 65, 1–15.

James, J. (2017), ‘MM algorithm for general mixed multinomial logit models’, Jour-

nal of Applied Econometrics 32(4), 841–857.

Jamshidian, M. and Jennrich, R. I. (2000), ‘Standard errors for EM estimation’,

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62(2), 257–

270.

Jones, L. R., Cherry, C. R., Vu, T. A. and Nguyen, Q. N. (2013), ‘The effect of incen-

tives and technology on the adoption of electric motorcycles: A stated choice

experiment in Vietnam’, Transportation Research Part A: Policy and Practice 57, 1–

11.

Jones, M. (2002), ‘A dependent bivariate t distribution with marginals on different

degrees of freedom’, Statistics & probability letters 56(2), 163–170.

194



www.manaraa.com

Kamakura, W. A. and Russell, G. J. (1989), ‘A probabilistic choice model for market

segmentation and elasticity structure’, Journal of marketing research 26(4), 379–

390.

Keane, M. and Wasi, N. (2013), ‘Comparing alternative models of heterogeneity in

consumer choice behavior’, Journal of Applied Econometrics 28(6), 1018–1045.

Keshavarzzadeh, V., Kirby, R. M. and Narayan, A. (2018), ‘Numerical integration

in multiple dimensions with designed quadrature’, SIAM Journal on Scientific

Computing 40(4), A2033–A2061.

Kim, S., Chen, M.-H. and Dey, D. K. (2007), ‘Flexible generalized t-link models for

binary response data’, Biometrika 95(1), 93–106.

Klein, N. J., Guerra, E. and Smart, M. J. (2018), ‘The Philadelphia story: Age, race,

gender and changing travel trends’, Journal of Transport Geography 69, 19–25.

URL: http://www.sciencedirect.com/science/article/pii/S0966692317307044

Koehler, E., Brown, E. and Haneuse, S. J.-P. (2009), ‘On the assessment of monte

carlo error in simulation-based statistical analyses’, The American Statistician

63(2), 155–162.

Koenker, R. and Yoon, J. (2009), ‘Parametric links for binary choice models: A

fisherian–bayesian colloquy’, Journal of Econometrics 152(2), 120–130.

Kuhfeld, W. F., Tobias, R. D. and Garratt, M. (1994), ‘Efficient experimental design

with marketing research applications’, Journal of Marketing Research pp. 545–557.

195



www.manaraa.com

Lange, K., Hunter, D. R. and Yang, I. (2000), ‘Optimization transfer using surro-

gate objective functions’, Journal of Computational and Graphical Statistics 9(1), 1–

20.

Lee, B. S. and McDonald, J. F. (2003), ‘Determinants of commuting time and dis-

tance for seoul residents: The impact of family status on the commuting of

women’, Urban Studies 40(7), 1283–1302.

Li, B. (2011), ‘The multinomial logit model revisited: A semi-parametric ap-

proach in discrete choice analysis’, Transportation Research Part B: Methodological

45(3), 461–473.

Liu, C. (2004), ‘Robit regression: A simple robust alternative to logistic and probit

regression’, Applied Bayesian Modeling and Causal Inference from Incomplete-Data

Perspectives: An Essential Journey with Donald Rubin’s Statistical Family pp. 227–

238.

Liu, Y., Bansal, P., Daziano, R. and Samaranayake, S. (2018), ‘A framework to inte-

grate mode choice in the design of mobility-on-demand systems’, Transportation

Research Part C: Emerging Technologies .

Louviere, J. and Eagle, T. (2006), Confound it! that pesky little scale constant

messes up our convenient assumptions, in ‘Proceedings of the Sawtooth Soft-

ware Conference’, pp. 211–228.

Louviere, J. J. and Meyer, R. J. (2008), ‘Formal choice models of informal choices’.

196



www.manaraa.com

Lundhede, T. H., Olsen, S. B., Jacobsen, J. B. and Thorsen, B. J. (2009), ‘Handling

respondent uncertainty in choice experiments: evaluating recoding approaches

against explicit modelling of uncertainty’, Journal of Choice Modelling 2(2), 118–

147.

Ma, X. and Zabaras, N. (2009), ‘An adaptive hierarchical sparse grid collocation

algorithm for the solution of stochastic differential equations’, Journal of Compu-

tational Physics 228(8), 3084–3113.

Marchenko, Y. V. and Genton, M. G. (2012), ‘A heckman selection-t model’, Journal

of the American Statistical Association 107(497), 304–317.

Martínez, F., Aguila, F. and Hurtubia, R. (2009), ‘The constrained multino-

mial logit: A semi-compensatory choice model’, Transportation Research Part B:

Methodological 43(3), 365–377.

McFadden, D. (1973), ‘Conditional logit analysis of qualitative choice behavior’,

Frontiers in Econometrics pp. 105–142.

McFadden, D. and Train, K. (2000), ‘Mixed MNL models for discrete response’,

Journal of Applied Econometrics pp. 447–470.

McLachlan, G. and Krishnan, T. (2007), The EM algorithm and Extensions, Vol. 382,

second edn, John Wiley & Sons, Hoboken, New Jersey.

McQuaid, R. W. and Chen, T. (2012), ‘Commuting times–the role of gender, chil-

dren and part-time work’, Research in transportation economics 34(1), 66–73.

197



www.manaraa.com

Meilijson, I. (1989), ‘A fast improvement to the EM algorithm on its own terms’,

Journal of the Royal Statistical Society. Series B (Methodological) pp. 127–138.

Meng, X.-L. and Rubin, D. B. (1991), ‘Using EM to obtain asymptotic variance-

covariance matrices: The SEM algorithm’, Journal of the American Statistical As-

sociation 86(416), 899–909.

Muehlegger, E. and Rapson, D. (2018), Understanding the distributional impacts

of vehicle policy: Who buys new and used alternative vehicles?, Technical re-

port, National Center for Sustainable Transportation.

Munger, D., L’Ecuyer, P., Bastin, F., Cirillo, C. and Tuffin, B. (2012), ‘Estimation of

the mixed logit likelihood function by randomized quasi-monte carlo’, Trans-

portation Research Part B: Methodological 46(2), 305–320.

Nagler, J. (1994), ‘Scobit: an alternative estimator to logit and probit’, American

Journal of Political Science pp. 230–255.

Nakayama, S. and Chikaraishi, M. (2015), ‘Unified closed-form expression of logit

and weibit and its extension to a transportation network equilibrium assign-

ment’, Transportation Research Part B: Methodological 81, 672–685.

Olsen, S. B., Lundhede, T. H., Jacobsen, J. B. and Thorsen, B. J. (2011), ‘Tough and

easy choices: testing the influence of utility difference on stated certainty-in-

choice in choice experiments’, Environmental and Resource Economics 49(4), 491–

510.

198



www.manaraa.com

Paleti, R., Bhat, C. R. and Pendyala, R. M. (2013), ‘Integrated model of residential

location, work location, vehicle ownership, and commute tour characteristics’,

Transportation Research Record 2382(1), 162–172.

Patil, P. N., Dubey, S. K., Pinjari, A. R., Cherchi, E., Daziano, R. and Bhat, C. R.

(2017), ‘Simulation evaluation of emerging estimation techniques for multino-

mial probit models’, Journal of choice modelling 23, 9–20.

Pewsey, A. (2000), ‘Problems of inference for azzalini’s skewnormal distribution’,

Journal of Applied Statistics 27(7), 859–870.

Piatek, R. and Gensowski, M. (2017), ‘A multinomial probit model with latent

factors: Identification and interpretation without a measurement system’.

Pinheiro, J. C., Liu, C. and Wu, Y. N. (2001), ‘Efficient algorithms for robust estima-

tion in linear mixed-effects models using the multivariate t distribution’, Journal

of Computational and Graphical Statistics 10(2), 249–276.

Rashidi, T. H., Auld, J. and Mohammadian, A. K. (2012), ‘A behavioral hous-

ing search model: Two-stage hazard-based and multinomial logit approach to

choice-set formation and location selection’, Transportation Research Part A: Pol-

icy and Practice 46(7), 1097–1107.

Richard, J.-F. and Zhang, W. (2007), ‘Efficient high-dimensional importance sam-

pling’, Journal of Econometrics 141(2), 1385–1411.

Ruud, P. A. (1991), ‘Extensions of estimation methods using the EM algorithm’,

Journal of Econometrics 49(3), 305–341.

199



www.manaraa.com

Ruud, P. A. (1996), ‘Simulation of the multinomial probit model: An analysis of

covariance matrix estimation’, Working Paper, Department of Economics, Univer-

sity of California, Berkeley .

Ryu, E. K. and Boyd, S. P. (2015), ‘Extensions of gauss quadrature via linear pro-

gramming’, Foundations of Computational Mathematics 15(4), 953–971.

Sándor, Z. and Train, K. (2004), ‘Quasi-random simulation of discrete choice mod-

els’, Transportation Research Part B: Methodological 38(4), 313–327.

Sarrias, M. and Daziano, R. (2016), ‘Multinomial logit models with continuous and

discrete individual heterogeneity in r: The gmnl package’, Journal of Statistical

Software (Accepted for publication) .

Schoemaker, P. J. (2013), Experiments on decisions under risk: The expected utility hy-

pothesis, Springer Science & Business Media.

Shoup, D. (2005), The High Cost of Free Parking, Planners Press, American Planning

Association, Chicago.

Smolyak, S. A. (1963), Quadrature and interpolation formulas for tensor products

of certain classes of functions, in ‘Doklady Akademii Nauk’, Vol. 148, Russian

Academy of Sciences, pp. 1042–1045.

Sohn, K. (2017), ‘An expectation-maximization algorithm to estimate the inte-

grated choice and latent variable model’, Transportation Science 51(3), 946–967.

200



www.manaraa.com

Spissu, E., Pinjari, A. R., Pendyala, R. M. and Bhat, C. R. (2009), ‘A copula-based

joint multinomial discrete–continuous model of vehicle type choice and miles

of travel’, Transportation 36(4), 403–422.

Stevens, M. R. (2017), ‘Does compact development make people drive less?’, Jour-

nal of the American Planning Association 83(1), 7–18.

URL: http://www.tandfonline.com/doi/abs/10.1080/01944363.2016.1240044

Swait, J. (2001), ‘A non-compensatory choice model incorporating attribute cut-

offs’, Transportation Research Part B: Methodological 35(10), 903–928.

Train, K. (2016), ‘Mixed logit with a flexible mixing distribution’, Journal of Choice

Modelling 19, 40–53.

Train, K. E. (2008), ‘EM algorithms for nonparametric estimation of mixing distri-

butions’, Journal of Choice Modelling 1(1), 40–69.

Train, K. E. (2009), Discrete choice methods with simulation, second edn, Cambridge

University Press.

Varin, C., Reid, N. and Firth, D. (2011), ‘An overview of composite likelihood

methods’, Statistica Sinica pp. 5–42.

Varin, C. and Vidoni, P. (2005), ‘A note on composite likelihood inference and

model selection’, Biometrika 92(3), 519–528.

Vij, A. and Krueger, R. (2017), ‘Random taste heterogeneity in discrete choice mod-

els: Flexible nonparametric finite mixture distributions’, Transportation Research

Part B: Methodological 106, 76–101.

201



www.manaraa.com

Vijverberg, C.-P. C. and Vijverberg, W. P. (2016), ‘Pregibit: a family of binary choice

models’, Empirical Economics 50(3), 901–932.

von Haefen, R. H. and Domanski, A. (2018), ‘Estimation and welfare analysis from

mixed logit models with large choice sets’, Journal of Environmental Economics

and Management 90, 101–118.

Wang, W.-L., Lin, T.-I. and Lachos, V. H. (2018), ‘Extending multivariate-t lin-

ear mixed models for multiple longitudinal data with censored responses and

heavy tails’, Statistical methods in medical research 27(1), 48–64.

Xu, X. and Reid, N. (2011), ‘On the robustness of maximum composite likelihood

estimate’, Journal of Statistical Planning and Inference 141(9), 3047–3054.

Yu, J., Goos, P. and Vandebroek, M. (2010), ‘Comparing different sampling

schemes for approximating the integrals involved in the efficient design

of stated choice experiments’, Transportation Research Part B: Methodological

44(10), 1268–1289.

202


	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Extending the Logit-Mixed Logit Model for a Combination of Random and Fixed Parameters
	Introduction: flexible mixing distributions
	Incorporating a subset of fixed parameters in logit-mixed logit models
	Model Specification
	Maximum Likelihood Estimator
	Computational Efficiency of LML with all random and some fixed parameters

	Empirical Application
	Data Description
	Estimates

	Conclusions

	Minorization-Maximization (MM) Algorithms for Semiparametric Logit Models: Bottlenecks, Extensions, and Comparisons
	Introduction
	Background
	Research Gap and Contribution

	Iterative Optimization Methods to Estimate the Logit Mixed Logit (LML) Model
	Logit-Mixed Logit (LML)
	LML Estimation using the EM Algorithm
	LML Estimation using the MM Algorithm
	LML Estimation using the Faster-MM Algorithm

	Iterative Optimization Methods to Estimate MON-MNL
	Mixture-of-normals logit (MON-MNL)
	MON-MNL Estimation using the EM Algorithm
	MON-MNL Estimation using the MM Algorithm
	MON-MNL Estimation using the faster-MM Algorithm
	Standard Errors

	Discussion: advantages and disadvantages of MM over EM and MSLE
	Monte Carlo Study
	LML Monte Carlo Study
	MON-MNL Monte Carlo Study

	Empirical Study: Adoption of Electric Motorcycles
	Conclusions

	Designed Quadrature to Approximate Integrals in Maximum Simulated Likelihood Estimation
	Introduction
	Quadrature Methods and Research Gap
	Moment-base Quadrature and Contributions

	Mixed Multinomial Logit Model
	Quadrature Methods
	Notation
	Univariate Quadrature
	Multivariate Quadrature
	Designed Quadrature (DQ)
	Discussion

	Monte Carlo Study
	Simulation Design
	Results and Discussion

	Empirical Study
	Experiment Design
	Estimation and Results

	Conclusions

	A Continuous-Multinomial Response Model with a t-distributed Error Kernel
	Introduction
	Literature Review
	Methodology
	Continuous variable model
	Choice model
	Joint Model Specification
	Joint Model Estimation

	Implications of using GCM-t in practice
	Class imbalance
	Behavioral implications

	Monte Carlo study and results
	Statistical properties of GCM-t estimator
	Effect of modeling fat-tailed data with normal distribution

	Empirical study
	Data description
	Results and discussion

	Conclusions and future work

	Appendix of Chapter 1
	Model Specification: Willingness to Pay Space
	Maximum Likelihood Estimator

	Appendix of Chapter 2
	Appendix of Chapter 4
	Matrix transformations
	Transformation matrix
	Modified transformation matrix
	Utility difference generator
	reparametrization of the Cholesky decomposition of Sigma

	MVTNCD illustration


